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The sport of ice hockey depends
crucially on having just the right
amount of friction between a
player’s skates and the ice. If there
were too much friction, the play-
ers would move much more
slowly; if there were too little fric-
tion, they could hardly keep from
falling over.

5-15 The normal and friction
forces arise from interactions
between molecules at high points
on the surfaces of the block and
the floor.

CHAPTER 5 APPLICATIONS OF NEWTON’S LAWS

5-4 FricTioNAL FORCES

We have seen several problems where a body rests or slides on a surface that exerts
forces on the body, and we have used the terms normal force and friction force to
describe these forces. Whenever two bodies interact by direct contact (touching) of their
surfaces, we call the interaction forces contact forces. Normal and friction forces are
both contact forces.

_ Our concern in this section is with friction, an important force in many aspects of
everyday life. The oil in a car engine minimizes friction between moving parts, but with-
out friction between the tires and the road we couldn’t drive or turn the car. Air
drag—the frictional force exerted by the air on a body moving through it—decreases
automotive fuel economy but makes parachutes work. Without friction, nails would pull
out, light bulbs would unscrew effortlessly, and riding a bicycle would be hopeless.

KINETIC AND STATIC FRICTION

Let’s consider a body sliding across a surface. When you try to slide a heavy box of
books across the floor, the box doesn’t move at all unless you push with a certain mini-
mum force. Then the box starts moving, and you can usually keep it moving with less
force than you needed to get it started. If you take some of the books out, you need less
force than before to get it started or keep it moving. What general statements can we
make about this behavior?

First, when a body rests or slides on a surface, we can always represent the contact
force exerted by the surface on the body in terms of components of force perpendicular
and parallel to the surface. We call the perpendicular component vector the normal force,
denoted by 7. (Recall that normal is a synonym for per, pendzcular) The component vec-
tor parallel to the surface is the friction force, denoted by f By definition, 7 and f are
always perpendicular to each other. We use script symbols for these quantities to empha-
size their special role in representing the contact force If the surface is frictionless, then
the contact force has only a normal component, and f is zero. (Frictionless surfaces are
an unattainable idealization, but we can approximate a surface as frictionless if the
effects of friction are negligibly small.) The direction of the friction force is always such
as to oppose relative motion of the two surfaces.

The kind of friction that acts when a body slides over a surface is called a kinetic
friction force fk. The adjective “kinetic” and the subscript “k” remind us that the two
surfaces are moving relative to each other. The magnitude of the kinetic friction force
usually increases when the normal force increases. It takes more force to slide a box full
of books across the floor than to slide the same box when it is empty. This principle is
also used in automotive braking systems; the harder the brake pads are squeezed against
the rotating brake disks, the greater the braking effect. In many cases the magnitude of
the kinetic friction force f, is found experimentally to be approximately proportional to
the magnitude 7 of the normal force. In such cases we can write

fu=wn

where g, (pronounced “mu-sub-k”) is a constant called the coefficient of kinetic fric-
tion. The more slippery the surface, the smaller the coefficient of friction. Because it is
a quotient of two force magnitudes, g, is a pure number without units.

CAUTION » Remember, the friction force and the normal force are always perpen-
dicular. Equation (5-5) is not a vector equation, but a scalar relation between the
magnitudes of the two perpendicular forces. €

Equation (5-5) is only an approximate representation of a complex phenomenon.
On a microscopic level, friction and normal forces result from the intermolecular forces
(fundamentally electrical in nature) between two rough surfaces at points where they
come into contact (Fig. 5—15). The actual area of contact is usually much smaller than

(magnitude of kinetic friction force), (5-5)
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the total surface area. As a box slides over the floor, bonds between the two surfaces
form and break, and the total number of such bonds varies; hence the kinetic friction
force is not perfectly constant. Smoothing the surfaces can actually increase friction,
since more molecules are able to interact and bond; bringing two smooth surfaces of the
same metal together can cause a “cold weld.” Lubricating oils work because an oil film
between two surfaces (such as the pistons and cylinder walls in a car engine) prevents
them from coming into actual contact.

Table 5-1 shows a few representative values of u,. Although these values are given
with two significant figures, they are only approximate, since friction forces can also
depend on the speed of the body relative to the surface. We’ll ignore this effect and
assume that ¢, and £, are independent of speed so that we can concentrate on the sim-
plest cases. Table 5—1 also lists coefficients of static friction; we’ll define these shortly.

TABLE 5-1

APPROXIMATE COEFFICIENTS OF FRICTION
MATERIALS STATIC, u, KINETIC,
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Brass on steel 0.51 0.44
Zinc on cast iron 0.85 0.21
Copper on cast iron 1.05 0.29
Glass on glass 0.94 0.40
Copper on glass 0.68 0.53
Teflon on Teflon 0.04 0.04
Teflon on steel 0.04 0.04
Rubber on concrete (dry) 1.0 0.8
Rubber on concrete (wet) 0.30 0.25

Friction forces may also act when there is no relative motion. If you try to slide that
box of books across the floor, the box may not move at all because the floor exerts an
equal and opposite friction force on the box. This is called a static friction forcez. In
Fig. 5—16a the box is at rest in equilibrium under the action of its weight W and the
upward normal force M, which is equal in magnitude to thé weight and exerted on the
box by the floor. Now we tie a rope to the box (Fig. 5-16b) and gradually increase the
tension 7 in the rope. At first the box remains at rest because, as T increases, the force
of static friction f; also increases (staying equal in magnitude to T').

At some point, T becomes greater than the maximum static friction force f; the sur-
face can exert. Then the box “breaks loose” (the tension T is able to break the bonds
between molecules in the surfaces of the box and floor) and starts to slide. Figure 5-16¢
is the force diagram when 7 is at this critical value. If T exceeds this value, the box is no
longer in equilibrium. For a given pair of surfaces the maximum value of £, depends on
the normal force. Experiment shows that in many cases this maximum value, called
(f)maeo 18 approximately proportional to 1; we call the proportionality factor u (pro-
nounced “mu-sub-s”) the coefficient of static friction. Some representative values of 1
are shown in Table 5—1. In a particular situation, the actual force of static friction can
have any magnitude between zero (when there is no other force parallel to the surface)
and a maximum value given by y . In symbols,

LS un (magnitude of static friction force). (5-6)

Like Eq. (5-5), this is a relation between magnitudes, not a vector relation. The
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(a)

(No sliding)

fi<pnl
()

(Just about to slide)

fi=p1t
©

(Now sliding)

fk = “‘kn
(@

5-16 (a), (b), (c) When there is no
relative motion of the surfaces, the
magnitude of the static friction
force f, is less than or equal to y 1.
(d) When there is relative motion,
the magnitude of the kinetic fric-
tion force f, equals ©, 1.
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2.5
Truck Pulls Crate

2.6

Pushing a Crate

2.7

Pushing a Crate Up a Wall
2.8

Skier Goes Down a Slope

2.9

Skier and Rope Tow

2.10

Pushing a Crate Up an Incline
2.12

Truck Pulls Two Crates

5-17 In response to an externally

applied force, the friction force

increases to (f; ). LThen the sur-

faces begin to slide across one
another, and the frictional force
drops back to a nearly constant

value f,. The kinetic friction force

varies somewhat as intermolecular

bonds form and break.

2
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equality sign holds only when the applied force 7, parallel to the surface, has reached the
critical value at which motion is about to start (Fig. 5—16¢). When T is less than this
value (Fig. 5—16b), the inequality sign holds. In that case we have to use the equilibrium
conditions (X F= 0) to find f.. If there is no applied force (T'= 0) as in Fig. 5-16a, then
there is no static friction force either (f; = 0).

As soon as sliding starts (Fig. 5-16d), the friction force usually decreases, it’s eas-
ier to keep the box moving than to start it moving. Hence the coefficient of kinetic
friction is usually Jess than the coefficient of static friction for any given pair of surfaces,
as shown in Table 5—1. If we start with no applied force (7 = 0) at time ¢= 0 and gradu-
ally increase the force, the friction force varies somewhat, as shown in Fig. 5-17.

In some situations the surfaces will alternately stick (static friction) and slip (kinetic
friction). This is what causes the horrible squeak made by chalk held at the wrong angle
while writing on the blackboard. Another stick-slip phenomenon is the squeaky noise
your windshield-wiper blades make when the glass is nearly dry; still another is the out-
raged shriek of tires sliding on asphalt pavement. A more positive example is the motion
of a violin bow against the string.

When a body slides on a layer of gas, friction can be made very small. In the linear
air track used in physics laboratories, the gliders are supported on a layer of air. The fric-
tional force is velocity-dependent, but at typical speeds the effective coefficient of
friction is of the order of 0.001. A similar device is the air table, where the pucks are sup-
ported by an array of small air jets about 2 cm apart.

j«—No relative _stc—Relative motion—>f

motion

Friction in horizontal motion A delivery company has just
unloaded a 500-N crate full of home exercise equipment on the
sidewalk in front of your house (Fig. 5—18a). You find that to get
it started moving toward your front door, you have to pull with a

horizontal force of magnitude 230 N. Once it “breaks loose” and
starts to move, you can keep it moving at constant velocity with
only 200 N. What are the coefficients of static and kinetic

(@)

friction?
¥ v
n n
F)ax 1 T=230N £ ] T=200N
-~ ——— X e X
w=3500N w=500N
y
(b) (©)

5-18 (a) Pulling a crate with a horizontal force. (b) Free-body diagram for the crate as it starts to
move. (c) Free-body diagram for the crate moving at constant velocity.




SOLUTION The state of rest and the state of motion with con-
stant velocity are both equilibrium conditions, so we use Egs.
(5-2). An instant before the crate starts to move, the static fric-
tion force has its maximum possible value, (f.),... = #1. The
appropriate force diagram is Fig. 5-18b. We find

LE =T+ ((fne) = 20N = (f)0x = 0 (S =230 N,
LF,=N+(-w)=n-500N =0, n =500 N,

(f)px = U1 (motion about to start),

_ B _ 20N _ e
n 500N

/'LS
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After the crate starts to move, the forces are as shown in Fig.
5-18c, and we have

SE=T+(-£)=200N - f, =0,
IF =N+ (-w)=1-500N =0,

f.= 200N,
7 =500 N,

o= wn (motion occurs),
=i o BN 6y
n S00N

It’s easier to keep the crate moving than to start it moving, and
so the coefficient of kinetic friction is less than the coefficient of
static friction.

In Example 5-13, what is the friction force if the crate is at rest
on the surface and a horizontal force of 50 N is applied to it?

SOLUTION From the equilibrium conditions we have
SFE=T+(f)=50N-f=0,
fi=50N.

In this case, f, is less than the maximum value (f)),,., = #. The
frictional force can prevent motion for any horizontal applied
force up to 230 N.

In Example 5—13, suppose you try to move your crate full of
exercise equipment by tying a rope around it and pulling upward
on the rope at an angle of 30° above the horizontal (Fig. 5-19a).
How hard do you have to pull to keep the crate moving with
constant velocity? Is this easier or harder than pulling horizon-
tally? Assume that w =500 N and g, = 0.40.

SOLUTION Figure 5-19b is a free-body diagram showing the
forces on the crate. The kinetic friction force f, is still equal to
2.1, but now the normal force 17 is not equal in magnitude to the
weight of the crate. The force exerted by the rope has an addi-
tional vertical component that tends to lift the crate off the floor.

(a)
5-19 (a) Pulling a crate with a force applied at an upward angle. (b) Free-body diagram for the
crate moving at constant velocity.

The crate is in equilibrium, since its velocity is constant, o
XF. = Tcos30°+ (—f,)= Tcos30° - 0401 = 0,
ZF,=Tsin30°+ n+ (=500 N) = 0.

These are two simultaneous equations for the two unknown
quantities T and 7. To solve them, we can eliminate one
unknown and solve for the other. There are many ways to do
this; here is one way. Rearrange the second equation to the form

n = 500 N — T sin 30°.
Substitute this expression for 72 back into the first equation:
T cos 30° — 0.40(500 N — T sin 30°) = 0.

3

T sin 30°
Pe
e
30°
f,=0401

k -
3 X

\ T cos 30°

w=500N

(b)
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Finally, solve this equation for 7, then substitute the result back
into either of the original equations to obtain 7. The results are

T=188N, 7 =406N.

Note that the normal force is less than the weight of the box

(w =500 N) because the vertical component of tension pulls
upward on the crate. Despite this, the tension required is a little
less than the 200-N force needed when you pulled horizontally
in Example 5-13. Try pulling at 22°; you’ll find that you need
even less force (see Challenge Problem 5-111).

Toboggan ride with friction | Let’s go back to the toboggan that
we studied in Example 5-9 (Section 5-3). The wax has worn
off, and there is now a coefficient of kinetic friction 4. The
slope has just the right angle to make the toboggan slide with
constant speed. Derive an expression for the slope angle in terms
of wand .

SOLUTION Figure 5-20 shows the free-body diagram. The slope
angle is o. The forces on the toboggan are its weight w and the
normal and frictional components of the contact force exerted on
it by the sloping surface. We take axes perpendicular and parallel
to the surface and represent the weight in terms of its compo-
nents in these two directions, as shown. The toboggan is in
equilibrium because its velocity is constant, and the equilibrium
conditions are

YF =wsino+(—f,)=wsina— N =0,
LE=n+ (-wcosa) = 0.
Rearranging, we get

w N =wsing, = wcosa.

Just as in Example 5-9, the normal force 7 is not equal to the
weight w. When we divide the first of these equations by the sec-
ond, we find

sin o
u, = = tan a.
cos o

5-20 Free-body diagram for the toboggan with friction.

The weight w doesn’t appear in this expression. Any toboggan,
regardless of its weight, slides down an incline with constant
speed if the coefficient of kinetic friction equals the tangent of
the slope angle of the incline. The steeper the slope, the greater
the coefficient of friction has to be for the toboggan to slide with
constant velocity. This is just what we should expect.

Toboggan ride with friction Il What if we have the same tobog-
gan and coefficient of friction as in Example 516, but a steeper
hill? This time the toboggan accelerates, although not as much
as in Example 5-9, when there was no friction. Derive an
expression for the acceleration in terms of g, o, 4, and w.

SOLUTION The free-body diagram (Fig. 5-21) is almost the
same as for Example 5-16, but the body is no longer in equilib-
rium,; a, is still zero, but a_ is not. Using w = mg, Newton’s
second law gives us the two equations

IF = mgsina + (—f,) = ma,,
XF, =N+ (-mgcosa) = 0.

From the second equation and Eq. (5-5), f, = i 1, we get an
expression for f:

n = mgcos q,

Jo = w = pmg cos a.

5-21 Free-body diagram for the toboggan with friction, going
down a steeper hill.




We substitute this back into the x-component equation. The
result is J

mg sin o + (—,/mg cos o) = ma,,

a, = g(sina — p, cos o).

Does this result make sense? Here are some special cases we
can check. First, if the hill is vertical, o= 90°; then sin o= 1,
cos =0, and a, = g. This is free fall, just what we would
expect. Second, on a hill at angle o with no friction, g, = 0. Then
a,= g sin o. The situation is the same as:in Example 5-9, and
we get the same result; that’s encouraging! Next, suppose that

there is just enough friction to make the toboggan move with

constant velocity. In that case, a, = 0, and our result gives
sina = y, cos o and U, = tan a.

This agrees with our result from Example 5—16; good! Finally,
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toboggan an initial downhill push to start it moving, it will slow
down and eventually stop.

We have pretty much beaten the toboggan problem to death,
but there is an important lesson to be learned. We started out
with a simple problem and then extended it to more and more
general situations. Our most general result, found in this exam-
ple, includes all the previous ones as special cases, and that’s a
nice, neat package! Don’t memorize this package; it is useful
only for this one set of problems. But do try to understand how
we obtained it and what it means.

One final variation that you may want to try out is the case
in which we give the toboggan an initial push up the hill. The
direction of the friction force is now reversed, so the accelera-
tion is different from the downbhill value. It turns out that the
expression for a, is the same as for downhill motion except that
the minus sign becomes plus. Can you prove this?

note that there may be so much friction that y, cos «is actually
greater than sin «. In that case, g, is negative; if we give the

ROLLING FRICTION

It’s a lot easier to move a loaded filing cabinet across a horizontal floor by using a cart
with wheels than to slide it. How much easier? We can define a coefficient of rolling
friction 1, which is the horizontal force needed for constant speed on a flat surface
divided by the upward normal force exerted by the surface. Transportation engineers call
. the tractive resistance. Typical values of u, are 0.002 to 0.003 for steel wheels on steel
rails and 0.01 to 0.02 for rubber tires on concrete. These values show one reason why
railroad trains are in general much more fuel-efficient than highway trucks.

fi=u,n =(0.010)(12,000 N) = 120 N (about 27 Ib).

From Newton’s first law, a forward force with this magnitude is
needed to keep the car moving with constant speed.

We invite you to apply this analysis to your crate of exercise
equipment (Example 5—13). If the delivery company brings it on
SOLUTION The normal force 7 is equal to the weight w, because a rubber-wheeled dolly with gz, = 0.02, only a 10-N force is
the road surface is horizontal and there are no other vertical needed to keep it moving at constant velocity. Can you verify
forces. From the definition of y,, the rolling friction force f, is this?

Motion with rolling friction A typical car weighs about

12,000 N (about 2700 1b). If the coefficient of rolling friction is
u.=0.010, what horizontal force must you apply to push the
car at constant speed on a level road? Neglect air resistance.

FLUID RESISTANCE AND TERMINAL SPEED

Sticking your hand out the window of a fast-moving car will convince you of the exis-
tence of fluid resistance, the force that a fluid (a gas or liquid) exerts on a body moving
through it. The moving body exerts a force on the fluid to push it out of the way. By
Newton’s third law, the fluid pushes back on the body with an equal and opposite force.
The direction of the fluid resistance force acting on a body is always opposite the
direction of the body’s velocity relative to the fluid. The magnitude of the fluid resis-
tance force usually increases with the speed of the body through the fluid. Contrast this
behavior with that of the kinetic friction force between two surfaces in contact, which
we can usually regard as independent of speed. For low speeds, the magnitude f of the
resisting force of the fluid is approximately proportional to the body’s speed v:

f=kv (fluid resistance at low speed), 5-7)
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Yw=mg

¥

5-22 Free-body diagram for a

body falling through a fluid.
a
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N
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5-23 Graphs of acceleration,
velocity, and position versus time
for a body falling with fluid resis-
tance proportional to v, shown as
dark color curves. The light color
curves show the corresponding
relations if there is no fluid resis-
tance.
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where k is a proportionality constant that depends on the shape and size of the body and
the properties of the fluid. In motion through air at the speed of a tossed tennis ball or
faster, the resisting force is approximately proportional to v’ rather than to v. It is then
called air drag or simply drag. Airplanes, falling raindrops, and cars moving at high
speed all experience air drag. In this case we replace Eq. (5-7) by

f =Dv?  (fluid resistance at high speed). (5-8)

Because of the v” dependence, air drag increases rapidly with increasing speed. The air
drag on a typical car is negligible at low speeds but comparable to or greater than the
force of rolling resistance at highway speeds. The value of D depends on the shape and
size of the body and on the density of the air.

We invite you to show that the units of the constant k in Eq. (5—7) are N + s/m or kg/s
and that the units of the constant D in Eq. (5—8) are N « s’/m’ or kg/m.

Because of the effects of fluid resistance, an object falling in a fluid will not have a
constant acceleration. To describe its motion, we can’t use the constant-acceleration
relationships from Chapter 2; instead, we have to start over, using Newton’s second law.
Let’s consider the following situation. You release a rock at the surface of a deep pond,
and it falls to the bottom. The fluid resistance force in this situation is given by Eq.
(5-7). What are the acceleration, velocity, and position of the rock as functions of time?

The free-body diagram is shown in Fig. 5-22. We take the positive direction to be
downward and neglect any force associated with buoyancy in the water. There are no
x-components, and Newton’s second law gives

XF, = mg + (—kv) = ma.
When the rock first starts to move, v = 0, the resisting force is zero, and the initial accel-
eration is a = g. As its speed increases, the resisting force also increases until finally it is
equal in magnitude to the weight. At this time, mg — kv = 0, the acceleration becomes
zero, and there is no further increase in speed. The final speed v,, called the terminal
speed, is given by mg — kv, =0, or
mg

v, = —=  (terminal speed, fluid resistance f = kv). (5-9)
Figure 5-23 shows how the acceleration, velocity, and position vary with time. As time
goes by, the acceleration approaches zero, and the velocity approaches v, (remember that
we chose the positive y-direction to be down). The slope of the graph of y versus ¢

becomes constant as the velocity becomes constant.
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2.1.2 \‘
Skydiver

In deriving the terminal speed in Eq. (5-9), we assumed that the fluid resistance
force was proportional to the speed. For an object falling through the air at high speeds,
so that the fluid resistance is proportional to v” as in Eq. (5-8), we invite you to show
that the terminal speed v, is given by

v, = % (terminal speed, fluid resistance f = Dv?). (5-13)

This expression for terminal speed explains the observation that heavy objects in air tend
to fall faster than light objects. Two objects with the same physical size but different
mass (say, a table-tennis ball and a lead ball with the same radius) have the same value
of D but different values of m. The more massive object has a larger terminal speed and
falls faster. The same idea explains why a sheet of paper falls faster if you first crumple

By changing the positions of their
arms and legs while falling, sky-
divers can change the value of the

constant D in Eq. (5-8) and hence
it into a ball; the mass m is the same, but the smaller size makes D smaller (less air drag adjust the terminal speed of their

for a given speed) and v, larger. fall (Eq. (5-13)).

Terminal speed of a sky diver For a human body falling through When the sky diver deploys the parachute, the value of D

air in a spread-eagle position, the numerical value of the con- increases greatly, and the terminal speed of the sky diver and
stant D in Eq. (5-8) is about 0.25 kg/m. For an 80-kg sky diver parachute is (thankfully) much less than 56 m/s.

the terminal velocity is, from Eq. (5-13),

b= M8 _ (80 kg)(9.8 m/s?)
"IN 0.25 kg/m

=56 m/s  (about 200 km/h, or 125 mi/h).



