
PHY–309 K. Solutions for mid-term test #3.

Problem #1:

There are three forces acting on the meter-stick: the tension T of the upper string, the

tension T ′ = mg (where m = 50 g) of the lower string, and the meter-stick’s own weight

Mg. Here is the force diagram:
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Although the weight force Mg is distributed all over the meter-stick, for the purpose of

calculating torques we treat it as acting at the center of gravity as shown on the above

diagram. By symmetry, the center of mass is in the middle of the meter-stick, at the 50 cm

mark.

The meter-stick is in equilibrium, so the net force and the net torque on it must be zero,

∑

F = 0,
∑

τ = 0. (1)

In the torque condition, we may calculate the torques relative to any pivot point we like

(as long as it’s the same point for all the forces), so let’s consider the net torque relative

to the 40 cm mark where the upper string is attached. With this choice, the tension T of

the upper string has zero lever arm, the tension T ′ = mg of the lower string has lever arm

40 cm− 10 cm = 30 cm in the counterclockwise direction, and the meter-stick’s own weight

Mg has lever arm 50 cm− 40 cm = 10 cm in the clockwise direction. Consequently, the net

torque is

τnet ≡ τ(T ) + τ(mg) + τ(Mg) = T × 0 + mg × 30cm − Mg × 10cm. (2)
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In equilibrium this net torque vanishes, hence

mg × 30cm − Mg × 10cm = 0. (3)

Solving this equation for the meter-stick’s own mass M , we have

M = m×
30 cm

10 cm
= m× 3 = 50 g × 3 = 150 g. (4)

Problem #2:

Out in space, there are no external torques on the two-spaceship system, so its net angular

momentum is conserved,

L = I × ω = const. (5)

Therefore, if the system’s moment of inertia I changes for some reason, the angular velocity

ω of its rotation must also change such that the angular momentum remains constant:

I → I ′, ω → ω′, but I ′ × ω′ = L′ = L = I × ω. (6)

The moment of inertia of the two-spaceship system depends on the cable’s length ℓ. Each

spaceship is at distance r = 1
2
ℓ from the system center of mass — around which it rotates

— so it contributes Mr2 = M(ℓ/s)2 to the system’s moment of inertia. The net moment of

inertia is therefore

I = M(ℓ/2)2 + M(ℓ/2)2 = 1
2
Mℓ2. (7)

When the astronauts pull on the cable and shorten the distance between the two spaceships

from ℓ = 240 m to ℓ′ = 120 m, they reduce the moment of inertia from I = 1
2
Mℓ2 to

I ′ = 1
2
Mℓ′2. Consequently, the system’s angular velocity changes to maintain constant
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angular momentum; solving eq. (6) for the ω′, we have

ω′ = ω ×
I

I ′
(8)

where

I

I ′
=

1
2
Mℓ2

1
2
Mℓ′2

=
ℓ2

ℓ′2
=

(

ℓ

ℓ′

)2

=

(

240 m

120 m
= 2.0

)2

= 4.0, (9)

hence

ω′ = 4.0× ω, (10)

the system now rotates 4 times faster than before. Numerically,

ω′ = 8.7 · 10−3 rad/s× 4.0 = 35 · 10−3 rad/s, (11)

or 1 revolution every 3 minutes.

Problem #3:

By the Archimedes’s Law, the buoyant force on the floating plastic globe equals the weight

of the water it displaces,

Fb = Vdisp × ρw × g. (12)

Note that the Vdisp in this formula is not the volume of the whole globe but only of its

submerged part that displaces the water. A globe floating equator-deep has the bottom

hemisphere submerged while the top hemisphere is above the waterline, so the volume of the

displaced water is one half of the whole ball’s volume V = 4400 cm3,

Vsubm =
V

2
= 2200 cm3. (13)

Hence, the buoyant force is

Fb =
V

2
× ρw × g.
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Since the globe floats in equilibrium, this buoyant force must cancel the globe’s own weight,

F bet
y = Fb − mg = 0. (14)

Consequently

mg = Fb =
V

2
× ρw × g, (15)

so the globe’s mass must be

m =
V

2
× ρw = 2200 cm3

× 1.0000 g/cm3 = 2200 g. (16)

Finally, the density of the plastic making up this globe is the ratio of the globe’s mass

to the volume filled with plastic. The globe in question is solid, so its whole volume V =

4400 cm3 is filled with plastic, hence plastic’s density is

ρ =
m

V
=

2200 g

4400 cm3
= 0.50 g/cm3. (17)

Problem #4:

(a) The speed of water jetting out from the bottle obtains from the Bernoulli equation

P1 + ρgy1 + 1
2
ρv21 = P2 + ρgy2 + 1

2
ρv22 (18)

for any two points 1 and 2 along the water flow. Let point 1 be the surface of water in the

bottle while 2 is the opening at the bottle’s bottom from which the water jets out. Then v2

is the speed of the water jet we need to find out in part (a).

To solve the Bernoulli equation (18) for the speed v2, let’s reorganize the equation as

ρ

2
×

(

v22 − v21
)

=
(

P1 − P2) + ρg × (y1 − y2). (19)

On the left hand side we may relate the speeds v1 and v2 by the continuity equation

v1 ×A1 = F = v2 ×A2 (20)

where A2 is the cross-sectional area of the bottle’s opening while A1 is the cross-sectional

area of the bottle itself. Since the opening is much narrow than the bottle itself, A2 ≪ A1,
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the continuity equation tells us that the water flows through the bottle itself much slower

than through the opening,

v1 =
A2

A1
× v2 ≪ v2 . (21)

Consequently, on the left hand side of eq. (19), we may neglect the v21 term compared to the

v22 term, thus v2 − v21 ≈ v22, and hence

ρ

2
× v22 ≈

(

P1 − P2) + ρg × (y1 − y2). (22)

As to the right hand side of this equation, the problem tells us to neglect the height y1 − y2

of the water inside the bottle, which means neglecting the ρg(y1− y2) term compared to the

(P1 − P2), hence

ρ

2
× v22 ≈ P1 − P2 . (23)

On the right hand side of this simplified equation, P2 is the water pressure in the jet

emerging from the bottle; since the jet is open to the air, P2 = air pressure outside the

bottle. On the other hand, P1 is the water pressure inside the bottle, which is equal to the

pressure of compressed air inside the bottle. Consequently,

P1 − P2 = P air
inside − P air

outside = P gauge, (24)

the gauge pressure of the air in the bottle; the problem tells us this gauge pressure is 690 kilo-

Pascals. Thus, eq. (23) becomes

ρ

2
× v22 = P gauge = 690 kPa (25)

where ρ is the density of water, ρ = 1000.0 kg/m3. Solving eq. (25), we obtain

v22 =
2P gauge

ρ
=

2× 690, 000 Pa

1, 000.0 kg/m3
= 1380 J/kg = 1380 m2/s2 (26)

and hence

v2 =
√

1380 m2/s2 ≈ 37 m/s, (27)

about 83 miles per hour.
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(b) Given the speed of the water jet we have obtained in part (b) and the cross-sectional

area A2 = 3.8 cm2 of the bottle opening, we can find the volume flow rate

F = v2 ×A2 = (37 m/s)× (3.8 · 10−4 m2) ≈ 14 · 10−3 m3/s = 14 L/s, (28)

almost 4 gallons per second.

The mass flow rate of water follows by multiplying the volume flow rate by the water

density,

M

t
= F × ρ = (14 · 10−3 m3/s)× (1000.0 kg/m3) = 14 kg/s. (29)

(c) The rocket equation gives the thrust force of a rocket as a product of the exhaust speed

of the jet it produces times the mass flow rate of the jet,

Fthrust = vexhaust ×
M

t
. (30)

For the water rocket in question, the exhaust speed is the speed of the water jet v2 = 37 m/s

we found in part (a), while the mass flow rate was found in part (b) to be 14 kg/s. Therefore,

the thrust of this rocket is

Fthrust = (37 m/s)× (14 kg/s) = 520 kg ·m/s2 = 520 N, (31)

about 120 pounds.

PS: In case you forgot the rocket equation, let me re-derive it from the momentum-impulse

theorem and the law of momentum conservation. During a short time interval ∆t, the rocket

ejects mass

∆M =
M

t
×∆t (32)

of something, usually burned-up rocket fuel, but in our case just water. The velocity of

the ejected mass is −ve relative to the rocket (where the − sign indicates the backward
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direction), so its momentum changes by

∆p[ejected] = −ve ×∆m. (33)

But the net momentum of the rocket+ejected material system is conserved, so the rocket’s

momentum changes by the opposite amount,

∆p[rocket] = +ve ×∆m = +ve ×
M

t
×∆t. (34)

As far as the rocket is concerned, this change of momentum is the impulse of the thrust force

of the rocket engine, thus

δp[rocket] = Fthrust ×∆t. (35)

Comparing the last two equations, we immediately obtain

Fthrust ×∆t = ∆p[rocket] = +ve ×
M

t
×∆t (36)

and hence the rocket equation

Fthrust = ve ×
M

t
. (30)

Problem #5:

(a) The rules for converting temperatures from the Fahrenheit scale to the Celsius (centi-

grade) scale and hence to the absolute Kelvin scale (counting from the absolute zero) are

T [in
◦

C] =
5

9
×
(

T [in
◦

F] − 32
)

,

T [in K] = T [in
◦

C] + 273.15.
(37)

Thus, the ground-level temperature converts to

T1 = 95◦ F = 35◦ C = 308.15 K, (38)

while the temperature at the 20,000 ft altitude converts to

T2 = 14◦ F = −10◦ C = 263.15 K. (39)
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(b) The combined gas law tells us that for a fixed amount of gas, its volume P , the absolute

pressure P , and the absolute temperature T (in Kelvins) are related to each other so that

P × V

T
= const (40)

Therefore, knowing the initial volume, pressure, and temperature of the helium gas in the

balloon in question, we may relate its volume, pressure, and temperature at some later time

as

P2 × V2
T2

=
P1 × V1

T1
. (41)

In particular, we may find the volume of the rising balloon from the pressure and temperature

at its altitude by solving eq. (41) for the V2:

P2 × V2
T2

=
P1 × V1

T1

⇐
=

V2 ×
P2

T2
= V1 ×

P1

T1

⇐
=

V2 =

(

V1 ×
P1

T1

)

×
T2
P2

= V1 ×
P1

P2
×

T2
T1

.

(42)

Note that the helium pressures P1 and P2 in this formula must be absolute pressures

rather than gauge pressures. Likewise, the temperatures T1 and T2 must be absolute tem-

perature, i.e., counted from the absolute zero. In other words, we should convert the tem-

peratures from the relative Fahrenheit scale to the absolute Kelvin scale, just as we did in

part (a). Thus, in eq. (42), P1 = 101.3 kPa, P2 = 46.4 kPa, T1 = 308.15 K, T2 = 263.15 K,

therefore

V2 = V1 ×
101.3 kPa

46.6 kPa
×

263.15 K

308.15 K
= V1 × 1.856 (43)

— the balloon’s volume at the 20,000 ft altitude became 85.6% larger than at the ground

level. In absolute terms, V1 = 125 m3 while

V2 = 1.856× 125 m3 = 232 m3. (44)
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