
COMPONENTS OF VECTORS

To describe motion in two dimensions we need a coordinate system with two perpendic-

ular axes, x and y. In such a coordinate system, any vector ~A can be uniquely decomposed

into a sum of two perpendicular vectors ~A = ~Ax+ ~Ay where ~Ax is parallel to the x axis while

~Ay is parallel to the y axis, for example

x

y

~A~Ay
~Ay

~Ax

~Ax

(1)

Since the ~Ax vector is always parallel to the x axis, we may describe it by a single signed

number Ax, which is positive when ~Ax points right but negative when ~Ay points left. Like-

wise, the ~Ay vectors may be described by a single signed number Ay — positive when ~Ay

points up but negative when ~Ay points down. The two signed numbers Ax and Ay are called

the components of the vector ~A. In two dimensions, any vector ~V can be completely specified

by its components (Vx, Vy).

Describing motion in all 3 dimensions of space requires a coordinate system with 3

perpendicular axes (x, y, z). Consequently, a 3D vector ~V has three components (Vx, Vy, Vz),

and we need to know all 3 components to completely specify the vector.
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Adding vectors in components.

In component notations, adding vectors is very easy: The components of a vector sum

~C = ~A+ ~B are simply the algebraic sums

Cx = Ax + Bx ,

Cy = Ay + By .
(2)

Here is the geometric explanation of this rule:

x

y

~A

~Ay

~Ax

~B
~By

~Bx

~C

~Cy

~Cx

(3)

In the same way, we may sum up several vectors: To get the components of a vector sum

~C = ~A1 + ~A2 + ~A3 + · · · + ~An , (4)

we separately sum up the x components of all the vectors and the y components of all the

vectors:

Cx = A1x + A2x + A3x + · · · + Anx ,

Cy = A1y + A2y + A3y + · · · + Any .
(5)

Note: the sums here are algebraic, so please mind the ± signs of the components.
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For the 3D vectors, there are similar formulae, but there is one more algebraic sum for

the z components:

Cx = A1x + A2x + A3x + · · · + Anx ,

Cy = A1y + A2y + A3y + · · · + Any ,

Cz = A1z + A2z + A3z + · · · + Anz .

(6)

Vector subtraction in components works similar to vector addition. To get

~B = ~C − ~A (7)

in components, subtract the components of ~A from the components of ~C,

Bx = Cx − Ax ,

By = Cy − Ay ,

in 3D also Bz = Cz − Az .

(8)

Conversion from magnitude and direction to components.

A vector quantity ~V has magnitude and direction. On a graph the magnitude is shown

by the length of the arrowed line; algebraically, the magnitude is a non-negative number |~V |.

In a 2D plane, the direction of a vector can be specified by the angle φv it makes with the

x axis, for example

x

y

φv

~V

(9)

Now let us draw a similar diagram which also includes the components (Vx, Vy) of the
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vector ~V :

x

y

φv

~V

~Vx

~Vy
(10)

Note the right triangle made by the three red lines; taking the ratios of this triangle’s sides

and applying basic trigonometry, we immediately obtain

Vx

|~V |
= cosφv ,

Vy

|~V |
= sin φv , (11)

and therefore

Vx = |~V | × cos φv , Vy = |~V | × sin φv . (12)

The triangle on the diagram (10) is drawn for direction of ~V in the first quadrant of

the coordinate system (between the positive x and positive y direction, φv < 90◦), but

the formulae (12) for the components work for all possible directions, provided we always

measure the angle φv counterclockwise from the positive x axis. For example, for ~V in the

second quadrant

x

y

φv
~V

~Vx

~Vy

90◦ < φv < 180◦,

Vx = |~V | × cos φv < 0,

Vy = |~V | × sin φv > 0,

(13)
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Likewise, for ~V in the third quadrant

x

y

φv

~V

~Vx

~Vy

180◦ < φv < 270◦,

Vx = |~V | × cosφv < 0,

Vy = |~V | × sinφv < 0,

(14)

or for ~V in the fourth quadrant

x

y

φv

~V

~Vx

~Vy

270◦ < φv < 360◦,

Vx = |~V | × cosφv > 0,

Vy = |~V | × sinφv < 0,

(15)
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Conversion from components to magnitude and direction.

Now supposed we know the (Vx, Vy) components of a vector ~V ; how do we find the

vector’s magnitude and direction?

The magnitude |~V | follows from the Pythagoras theorem for the right triangles on any

of the diagrams on the last two pages:

|~V |2 = V 2
x + V 2

y (16)

— regardless of the signs of the Vx and Vy — and therefore

|~V | =
√

V 2
x + V 2

y . (17)

To find the direction of ~V , we need a bit of trigonometry. Let’s take the ratio of the two

equations (12) for the components (Vx, Vy):

Vy
Vx

=
|~V | × sinφv

|~V | × cos φv
=

sinφv
cosφv

= tanφv . (18)

Thus the ratio Vy/Vc gives us the tangent of the angle φv, so naively we may calculate the

angle φv itself as the arc-tangent (the inverse tangent) of this ratio,

φv
??
= arctan

Vy
Vx

. (19)

However, the formula may be off by 180◦, so it might give us precisely the opposite direction.

Indeed, the vectors ~V and −~V have opposite directions but similar ratios

Vy
Vx

=
−Vy
−Vx

. (20)

This ambiguity is related to the trigonometric identity

for any angle ϕ, tan(ϕ) = tan(ϕ± 180◦). (21)
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Therefore, given the components of a vector, its direction is

φv = either arctan
Vy
Vx

or arctan
Vy
Vx

± 180◦,

depending on the signs of the Vx and Vy.

(22)

Using conversion to add vectors.

Consider a simple problem: A person rides a bike for 10.0 km in the direction 30◦

(counterclockwise from the x axis), then changes direction to 150◦ (also counterclockwise

from the x axis) and rides for 20.0 km. Find his net displacement vector.

x

y

~D1

~D2

~Dnet

~Dnet = ~D1 + ~D2

(23)

To solve this problem, we start by converting the displacement vectors ~D1 and ~D2 into

components:

~D1 = (10.0 km; 30◦) =⇒







D1x = 10.0 km× cos(30◦) = +8.66 km,

D1y = 10.0 km× sin(30◦) = +5.00 km,

~D2 = (20.0 km; 150◦) =⇒







D2x = 20.0 km× cos(150◦) = −17.32 km,

D2y = 20.0 km× sin(150◦) = +10.00 km.

(24)

Next, we add the two vectors in components:

Dnet
x = D1x + D2x = +8.66 km − 17.32 km = −8.66 km,

Dnet
y = D1y + D2y = +5.00 km + 10.00 km = +15.00 km.

(25)

Finally, we convert the components of the net displacement vector into its direction and
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magnitude. For the magnitude we have

| ~Dnet|
2 =

(

Dnet
x

)2
+

(

Dnet
y

)2
= (−8.66 km)2 + (+15.00 km)2

= 75 km2 + 225 km2 = 300 km2
(26)

and hence

| ~Dnet| =
√

300 km2 ≈ 17.3 km. (27)

As to the direction,

Dnet
y

Dnet
x

=
+15.00 km

−8.66 km
= −1.73 =⇒ arctan

Dnet
y

Dnet
x

= −60◦. (28)

The −60◦ angle is the same as 360◦ − 60◦ = +300◦, which correspond to the direction of

~Dnet being in the fourth quadrant. However, the signs of the components Dnet
x < 0, Dnet

y > 0

show that the direction of ~Dnet is in the second quadrant. This means that the arc-tangent

is off by 180◦, so the correct direction of the net displacement vector is

φnet = −60◦ + 180◦ = +120◦ (counterclockwise from the x axis). (29)

The above example illustrate a general rule for calculating sums of several vectors,

~Anet = ~A1 + ~A2 + · · · + ~An . (30)

(1) First, convert all the vectors into components,

Ai,x = | ~Ai| × cos φi , Ai,y = | ~Ai| × sinφi , for i = 1, 2, . . . , n. (31)

(2) Second, add the vectors in components,

Anet
x = A1,x + A2,x + · · · + An,x , Anet

y = A1,y + A2,y + · · · + An,y . (32)

(3) Finally, convert the components of the ~Anet into its magnitude and direction.
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Navigation Convention

In navigation, the directions are given by angles counted clockwise from North instead of

counterclockwise from the x axis (whatever that might be). For example, an airplane flying

in the Southwest direction — which is 225◦ clockwise from North — is said to have heading

225◦.

EW

N

S

225◦

~vplane

(33)

To avoid confusion when you work a navigation-related problem, it is best to avoid the x and

y axes altogether and use the North and East axes instead of them. In particular, for the

vectors you should use the North and East components instead of the x and y components.

In this convention,

VN = |~V | × cosφv , VE = |~V | × sin φv , for φv counted clockwise from North. (34)

For example, for a plane flying at speed v = 220 MPH in the Southwest direction (φv = 225◦),

the velocity vector ~v has components

vN = 220 MPH× cos 225◦ = −155 MPH,

vE = 220 MPH× sin 225◦ = −155 MPH.
(35)

Note negative signs of the components since the plane is flying South and West instead of

North and East.
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Multiplying vectors by scalars.

The product of a scalar s and a vector ~V is a vector s~V . Its magnitude is the absolute

value of s times the magnitude of ~V ,

|s~V | = |s| × |~V |. (36)

The direction of the product s~V is the same as direction of ~V for positive s but opposite from

the direction of ~V for negative s. (For s = 0 the product s~V = ~0 — the zero vector — and

its direction is undefined.)

In components, ~B = s ~A has

Bx = s×Ax , By = s× Ay , and in 3D also Bz = s×Az . (37)

The product of a vector and a scalar obeys the usual algebraic rules for opening paren-

theses:

s
(

~V1 + ~V2
)

= s~V1 + s~V2 ,

s
(

~V1 − ~V2
)

= s~V1 − s~V2 ,

(s1 + s2)~V = s1~V + s2~V ,

(s1 − s2)~V = s1~V − s2~V ,

s1
(

s2~V
)

= (s1s2)~V ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(38)

Physical Example: For a motion at constant velocity vector ~v — i.e., motion at constant

speed in a constant direction — the displacement vector after time t is given by

~D = t~v. (39)

In terms of the time-dependent position vector (AKA radius-vector) ~R(t) of the moving body

— whose components Rx(t) and Ry(t) are simply the time-dependent coordinates (x, y) of
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the body — the displacement vector is the vector difference

~D = ∆~R = ~R(t) − ~R0 , (40)

so eq. (39) becomes

~R(t) = ~R0 + t~v. (41)

In components, this formula means

x(t) = x0 + t× vx and y(t) = y0 + t× vy (42)

— uniform motion in both x and y directions.

Division: You cannot divide a scalar by vector, or a vector by another vector. However,

you can divide a vector by a scalar — simply multiply the vector by the inverse scalar,

~V

s
def
=

1

s
~V . (43)

For example, to find the average velocity vector of some body, divide its displacement vector

by the time this displacement took,

~vavg =
∆~R

∆t
. (44)

In the limit of a very short time interval, this formula gives you the instantaneous velocity

vector

~v(t) = lim
∆t→0

~R(t+∆t)− ~R(t)

∆t
. (45)

In general, the velocity vector changes with time, which leads to the acceleration vector

~a(t) = lim
∆t→0

~v(t+∆t)− ~v(t)

∆t
. (46)
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Motion at constant acceleration.

Consider motion of some body having a constant acceleration vector ~a. (Neither direction

nor magnitude of ~a changes with time.) The velocity vector of such a body changes with

time according to

~v(t) = ~v0 + t~a (47)

where ~v0 is the initial velocity vector at time t0 = 0. Note: eq. (46) looks simple in vector

notations, or in components

vx(t) = v0x + t× ax , vy(t) = v0y + t× ay , (48)

but it leads to rather complicated formulae for the time dependence of the speed |~v(t)| and

the direction of motion.

The time-dependent position vector ~R(t) of a uniformly accelerating body is given by

~R(t) = ~R0 + t~v0 + 1
2
t2~a, (49)

or in components

x(t) = x0 + t× v0x + 1
2 t

2 × ax ,

y(t) = y0 + t× v0y + 1
2t

2 × ay .
(50)

Projectile Motion

A projectile is an object you shoot, kick, throw, or otherwise send flying towards a target,

for example a basketball, a bullet, or a grenade. In physics, projectile motion is a motion of

a body that has been released with some initial velocity (which generally has both horizontal

and vertical components) and then flies free from forces other than gravity and air resistance.

When the air resistance may be neglected — which is the only case we shall study in this

class — the projectile has a constant acceleration vector ~a = ~g due to gravity. Consequently,

the projectile’s velocity vector ~v(t) and position vector ~R(t) evolve with time according to

eqs. (47) through (50).
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A projectile moves in a vertical plane, so its motion can be described using 2D vectors

and their components. Let’s use a coordinate system where the y axis points vertically up

while the x axis is horizontal. (In 3D, the x axis points along the horizontal components

of the initial velocity.) In these coordinates, the downward acceleration vector ~a = ~g has

components

ax = 0, ay = −g. (51)

Consequently, eqs. (48) and (50) become

vx(t) = v0x = const (time independent),

x(t) = x0 + v0x × t,

vy(t) = v0y − g × t,

y(t) = y0 + v0y × t −
g

2
× t2.

(52)

Note that the first two of these equations which describe the horizontal motion are completely

independent from the last two equations describing the vertical motion. Thus, the projectile

moves horizontally at constant velocity as if there were no vertical motion, and at the same

time it moves vertically up and down at constant acceleration as if there were no horizontal

motion!
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