Bogolyubov Transform

Given some kind of annihilation and creation operators $\hat{a}_{\mathbf{k}}$ and $\hat{a}_{\mathbf{k}}^{\dagger}$ which satisfy the bosonic commutation relations

$$[\hat{a}_{\mathbf{k}}, \hat{a}_{\mathbf{k}'}] = [\hat{a}_{\mathbf{k}}^{\dagger}, \hat{a}_{\mathbf{k}'}^{\dagger}] = 0, \qquad [\hat{a}_{\mathbf{k}}, \hat{a}_{\mathbf{k}'}^{\dagger}] = \delta_{\mathbf{k}, \mathbf{k}'},$$
 (1)

we may define new operators $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ according to

$$\hat{b}_{\mathbf{k}} = \cosh(t_{\mathbf{k}})\hat{a}_{\mathbf{k}} + \sinh(t_{\mathbf{k}})\hat{a}_{-\mathbf{k}}^{\dagger}, \quad \hat{b}_{\mathbf{k}}^{\dagger} = \cosh(t_{\mathbf{k}})\hat{a}_{\mathbf{k}}^{\dagger} + \sinh(t_{\mathbf{k}})\hat{a}_{-\mathbf{k}}$$
 (2)

for some arbitrary real parameters $t_{\mathbf{k}} = t_{-\mathbf{k}}$. These new operators $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ satisfy the same bosonic commutation relations as the $\hat{a}_{\mathbf{k}}$ and the $\hat{a}_{\mathbf{k}}^{\dagger}$:

$$[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}] = [\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}'}^{\dagger}] = 0, \qquad [\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}^{\dagger}] = \delta_{\mathbf{k}, \mathbf{k}'}.$$
 (3)

The Bogolyubov transform — replacing the 'original' creation and annihilation operators $\hat{a}_{\mathbf{k}}^{\dagger}$ and $\hat{a}_{\mathbf{k}}$ with the 'transformed' operators $\hat{b}_{\mathbf{k}}^{\dagger}$ and $\hat{b}_{\mathbf{k}}$ — is useful for diagonalizing quadratic Hamiltonians of the form

$$\hat{H} = \sum_{\mathbf{k}} A_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} + \frac{1}{2} \sum_{\mathbf{k}} B_{\mathbf{k}} \left(\hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}} + \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger} \right)$$
(4)

where for all momenta \mathbf{k} , $A_{\mathbf{k}} = A_{-\mathbf{k}}$, $B_{\mathbf{k}} = B_{-\mathbf{k}}$, and $A_{\mathbf{k}} > |B_{\mathbf{k}}|$. Indeed, for a suitable choice of the $t_{\mathbf{k}}$ parameters,

$$\hat{H} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} + \text{const} \quad \text{where } \omega_{\mathbf{k}} = \sqrt{A_{\mathbf{k}}^2 - B_{\mathbf{k}}^2}.$$
 (5)

Moreover, $\hat{b}_{\mathbf{k}}^{\dagger}\hat{b}_{\mathbf{k}} - \hat{b}_{-\mathbf{k}}^{\dagger}\hat{b}_{-\mathbf{k}} = \hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{k}} - \hat{a}_{-\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}$ and consequently

$$\hat{\mathbf{P}} \equiv \sum_{\mathbf{k}} \mathbf{k} \times \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} = \sum_{\mathbf{k}} \mathbf{k} \times \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}.$$
 (6)

Proof of (3):

Combining definitions (2) with commutation relations (1), we immediately calculate

$$[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}] = \cosh(t_{\mathbf{k}}) \sinh(t_{\mathbf{k}'}) \delta_{\mathbf{k}, -\mathbf{k}'} - \sinh(t_{\mathbf{k}}) \cosh(t_{\mathbf{k}'}) \delta_{-\mathbf{k}, \mathbf{k}'} = 0$$
 (7)

where the second equality follows from $t_{\mathbf{k}} = t_{\mathbf{k}'}$ for $\mathbf{k} = -\mathbf{k}'$. Likewise, $[\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}'}^{\dagger}] = 0$. Finally,

$$\begin{aligned}
[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}^{\dagger}] &= \cosh(t_{\mathbf{k}}) \cosh(t_{\mathbf{k}'}) \delta_{\mathbf{k}, \mathbf{k}'} - \sinh(t_{-\mathbf{k}}) \sinh(t_{-\mathbf{k}'}) \delta_{-\mathbf{k}, -\mathbf{k}'} \\
&= \delta_{\mathbf{k}, \mathbf{k}'} \Big(\cosh^{2}(t_{\mathbf{k}}) - \sinh^{2}(t_{\mathbf{k}}) = 1 \Big).
\end{aligned} (8)$$

In other words, the $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ operators satisfy the same bosonic commutations relations

$$[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}] = 0, \quad [\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}'}^{\dagger}] = 0, \quad [\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}'}^{\dagger}] = \delta_{\mathbf{k}, \mathbf{k}'}.$$
 (9)

as the original $\hat{a}_{\mathbf{k}}$ and $\hat{a}_{\mathbf{k}}^{\dagger}$ operators. $\mathcal{Q}.\mathcal{E}.\mathcal{D}$

Proof of (5):

Applying eqs. (2) twice, we immediately obtain

$$\hat{b}_{\mathbf{k}}^{\dagger}\hat{b}_{\mathbf{k}} = \cosh^{2}(t_{\mathbf{k}})\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{k}} + \cosh(t_{\mathbf{k}})\sinh(t_{\mathbf{k}})(\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}^{\dagger} + \hat{a}_{-\mathbf{k}}\hat{a}_{\mathbf{k}}) + \sinh^{2}(t_{\mathbf{k}})(\hat{a}_{-\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}^{\dagger} + 1). \tag{10}$$

Next, we use $t_{-\mathbf{k}} = t_{\mathbf{k}}$ to combine

$$\hat{b}_{\mathbf{k}}^{\dagger}\hat{b}_{\mathbf{k}} + \hat{b}_{-\mathbf{k}}^{\dagger}\hat{b}_{-\mathbf{k}} = \left(\cosh^{2}(t_{\mathbf{k}}) + \sinh^{2}(t_{\mathbf{k}}) = \cosh(2t_{\mathbf{k}})\right) \times \left(\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{k}} + \hat{a}_{-\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}\right) + \left(2\cosh(t_{\mathbf{k}})\sinh(t_{\mathbf{k}}) = \sinh(2t_{\mathbf{k}})\right) \times \left(\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}^{\dagger} + \hat{a}_{-\mathbf{k}}\hat{a}_{\mathbf{k}}\right) + \text{const.}$$
(11)

Finally, for $\omega_{-\mathbf{k}} \equiv \omega_{\mathbf{k}}$ we have

$$\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} = \frac{1}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}} (\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} + \hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}})$$

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} \cosh(2t_{\mathbf{k}}) \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} + \frac{1}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}} \sinh(2t_{\mathbf{k}}) \left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger} + \hat{a}_{-\mathbf{k}} \hat{a}_{\mathbf{k}} \right) + \text{const.}$$
(12)

Consequently, the Hamiltonian (4)can be "diagonalized" in terms of the transformed creation

/ annihilation operators (2), provided we can find $\omega_{\mathbf{k}} = \omega_{-\mathbf{k}}$ and $t_{\mathbf{k}} = t_{-\mathbf{k}}$ such that

$$\omega_{\mathbf{k}} \cosh(2t_{\mathbf{k}}) = A_{\mathbf{k}} \quad \text{and} \quad \omega_{\mathbf{k}} \sinh(2t_{\mathbf{k}}) = B_{\mathbf{k}}.$$
 (13)

These equations are easy to solve, and the solution exists as long as $A_{\mathbf{k}} = A_{-\mathbf{k}}$, $B_{\mathbf{k}} = B_{-\mathbf{k}}$, and $A_{\mathbf{k}} > |B_{\mathbf{k}}|$, namely

$$t_{\mathbf{k}} = \frac{1}{2} \operatorname{artanh} \frac{B_{\mathbf{k}}}{A_{\mathbf{k}}} \quad \text{and} \quad \omega_{\mathbf{k}} = \sqrt{A_{\mathbf{k}}^2 - B_{\mathbf{k}}^2}.$$
 (14)

 $Q.\mathcal{E}.\mathcal{D}.$

Proof of (6):

Using eq. (10) and $t_{-\mathbf{k}} = t_{\mathbf{k}}$, we immediately see that

$$\hat{b}_{\mathbf{k}}^{\dagger}\hat{b}_{\mathbf{k}} - \hat{b}_{-\mathbf{k}}^{\dagger}\hat{b}_{-\mathbf{k}} = \left(\cosh^{2}(t_{\mathbf{k}}) - \sinh^{2}(t_{\mathbf{k}}) = 1\right) \times (\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{k}} - \hat{a}_{-\mathbf{k}}^{\dagger}\hat{a}_{-\mathbf{k}}). \tag{15}$$

Consequently,

$$\hat{\mathbf{P}} = \sum_{\mathbf{k}} \mathbf{k} \times \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} = \sum_{\mathbf{k}} (-\mathbf{k}) \times \hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}
= \frac{1}{2} \sum_{\mathbf{k}} \mathbf{k} \times (\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} - \hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}})
= \frac{1}{2} \sum_{\mathbf{k}} \mathbf{k} \times (\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} - \hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}})
= \sum_{\mathbf{k}} \mathbf{k} \times \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}.$$
(16)

 $Q.\mathcal{E}.\mathcal{D}.$