
Glashow–Weinberg–Salam Theory

Glashow–Weinberg–Salam theory is a unified theory of weak and electromagnetic inter-

actions. At its core is the SU(2)W × U(1)Y gauge theory spontaneously broken down to the

U(1)EM. Out of 4 gauge fields W a
µ (a = 1, 2, 3) and Bµ, one linear combination remains mass-

less and gives rise to the electromagnetism, while 3 other linear combinations become massive

and give rise to the weak interactions.

The key to the spontaneous breakdown of the electroweak gauge symmetry is the doublet

of complex fields Hα (α = 1, 2) called the Higgs fields. The SU(2)W ×U(1)Y quantum numbers

of these fields are (2,+1
2); that is, they form a doublet of the SU(2)W and have the U(1)Y

hypercharge y = +1
2 . Thus,

DµHα(x) = ∂µHα +
ig2

2
τaαβW

a
µ (x)Hβ(x) +

ig1

2
BµHα (1)

where g2 is the SU(2)W gauge coupling and g1 is the U(1)Y gauge coupling.

The gauge fields W a
µ and Bµ and the Higgs fields Hα are the only bosonic fields of the

GWS theory. There are also 24 fermionic fields describing the quarks and the leptons — I have

a separate set of notes about them — but let’s take care of the bosons first. The bosonic part

of the theory’s Lagrangian is

L = −1
4W

a
µνW

aµν − 1
4BµνB

µν + DµH
†DµH − λ

2

(
H†H − v2

2

)2

+ fermionic terms (2)

where

Bµν = ∂µBν − ∂νBµ ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2ε

abcW b
µW

c
ν ,

H =

(
H1

H2

)
, H† =

(
H∗1 , H

∗
2

)
,

(3)

and DµH, DµH
† are row/column vector forms of DµHα and DµH

∗
α from eq. (1). The scalar

potential V = λ
2

(
H†H − v2

2

)2
has a local maximum rather than a minimum at H = 0, while

its minima form a spherical shell H†H = v2

2 in the scalar field space C2 = R4. All such minima
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are related to each other by the gauge symmetry, so without loss of generality we assume the

Higgs fields have Vacuum Expectation Values (VEVs)

〈H〉 =
1√
2

(
0

v

)
. (4)

Note that this expectation value breaks 3 out of 4 gauge symmetries of the theory, but one

combination of the U(1)Y and an U(1) subgroup of the SU(2)2 remains unbroken. Indeed,

the U(1)Y symmetry exp
(
iΘ(x)Ŷ

)
acts on the Higgs fields as H(x) → exp

(
iyΘ(x)

)
H(x) =

exp
(
i
2Θ(x)

)
H(x) since H has y = +1

2 , while the SU(2) symmetry exp
(
iΘ(x)T̂ 3

)
— for the

same Θ(x) — ants on the SU(2) double H as H(x) → exp
(
i
2Θ(x)τ3

)
H(x). Combining the

two symmetries, we have

H(x) → exp
(
i
2Θ(x)

)
exp
(
i
2Θ(x)τ3

)
H(x) =

(
eiΘ(x) 0

0 1

)
H(x), (5)

which indeed leaves the vacuum expectation value (4) invariant. Thus, the U(1) subgroup of

the electroweak SU(2)W × U(1)Y generated by the operator

Q̂ = Ŷ + T̂ 3 (6)

remains unbroken. Physically, this subgroup is the U(1)Q gauge symmetry of the electromag-

netism and Q̂ is the electric charge operator (or rather electric charge in units of e).

We shall see in a moment that one linear combination of the four SU(2)W ×U(1)Y gauge

fields corresponding to the Q̂ generator remains massless while the other 3 combinations become

massive via the Higgs mechanism. The same mechanism also eliminates 3 scalar fields, which

becomes the longitudinal components of the 3 massive vector fields. Since the 2 complex Higgs

fields are equivalent to 4 real scalars, we end up with 4 − 3 = 1 physical scalar field h(x); its

quanta — called the physical Higgs particles — were experimentally discovered at the LHC in

2013.

The simplest way to see how this works is to fix the unitary gauge for the spontaneously

broken symmetries. Note that any complex doublet H(x) can be SU(2)–rotated to

H ′(x) = U(x)H(x) =
1√
2

(
0

h̃(x)

)
(7)

for a real h̃(x) ≥ 0. This gauge transform would be singular for H(x) ≈ 0 but it is nice and
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smooth for H(x) in the vicinity of the vacuum expectation value (4), so we may use it to fix

the unitary gauge H1(x) ≡ 0, =(H2(x)) ≡ 0. Once we fix this gauge, we are left with a single

real scalar field h̃(x), which we may now shift by its VEV,

h̃(x) = v + h(x). (8)

In terms of this shifted field,

H†H − v2

2
=

(v + h)2

2
− v2

2
= vh + 1

2h
2, (9)

so the scalar potential becomes

V (h) =
λ

2

(
H†H − v2

2

)2

=
λ

2

(
vh + 1

2h
2
)2

=
λv2

2
× h2 +

λv

2
× h3 +

λ

8
× h4 (10)

with a positive mass2 = λv2 > 0 for the physical Higgs field. Experimentally, v = 247 GeV

while the physical Higgs mass is 125 GeV, which means λ ≈ 0.26.

The mass terms for the vector fields emerge from the kinetic term DµH
†DµH for the Higgs

doublets. Indeed, in the unitary gauge

DµH =
1√
2

(
i
2g2

(
W 1
µ − iW 2

µ

)
h̃

∂µh̃ + i
2

(
g1Bµ − g2W

3
µ

)
h̃

)
=

1√
2

(
i
2g2

(
W 1
µ − iW 2

µ

)
(v + h)

∂µh + i
2

(
g1Bµ − g2W

3
µ

)
(v + h)

)
(11)

and hence

DµH
†DµH = 1

2

∣∣∣∂µh + i
2

(
g1Bµ − g2W

3
µ

)
(v + h)

∣∣∣2 + 1
2

∣∣∣ i2g2

(
W 1
µ − iW 2

µ

)
(v + h)

∣∣∣2
= 1

2(∂µh)2 +
(v + h)2

8

(
g1Bµ − g2W

3
µ

)2
+

g2
2(v + h)2

8

((
W 1
µ

)2
+
(
W 2
µ

)2)
.

(12)

The first term on the last line here is the kinetic term for the physical Higgs field while the

rest are the mass terms for the vector fields and also their interactions with the physical Higgs

field h(x). In particular, the vector mass terms obtain from truncating the (v + h(x))2 factors
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to simply v2, thus

Lvector
masses =

g2
2v

2

8
×
((
W 1
µ

)2
+
(
W 2
µ

)2)
+

v2

8
×
(
g1Bµ − g2W

3
µ

)2
. (13)

In particular, the W 1
µ and W 2

µ vector fields have masses

M2
W =

g2
2v

2

4
=⇒ MW =

g2v

2
, (14)

while the W 3
µ and Bµ vector fields have a 2× 2 mass matrix

M2 =
v2

4

(
g2

2 −g2g1

−g2g1 g2
1

)
. (15)

This matrix has eigenvalues

M2
Z =

(g2
2 + g2

1)v2

4
and M2

A = 0 (16)

— as promised, there is one massless vector field — while the mass eigenstates correspond to

the vector fields

massive Zµ(x) = cos θ ×W 3
µ(x) − sin θ ×Bµ(x),

massless Aµ(x) = sin θ ×W 3
µ(x) + cos θ ×Bµ(x),

(17)

where

θ = arctan
g1

g2
(18)

is the weak mixing angle or the Weinberg angle; experimentally, sin2 θ ≈ 0.23.

Physically, the Aµ(x) is the EM field whose quanta are massless photons, the Zµ(x) is the

neutral weak field whose quanta are Z0 particles of mass MZ ≈ 91 GeV, and the W 1,2
µ (x) —

or rather their linear combinations

W+
µ (x) =

W 1
µ(x) + iW 2

µ(x)
√

2
and W−µ (x) =

W 1
µ(x) − iW 2

µ(x)
√

2
(19)

— are the charged weak fields (electric charges q = ±1) whose quanta are the W+ and W−

particles of mass MW ≈ 80 GeV. The experimentally found mass ratio between the W± and
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Z0 particles gives us the value of the weak mixing angle:

M2
W

M2
Z

=
g2

2

g2
2 + g2

1

=
1

1 + tan2 θ
= cos2 θ =⇒ cos2 θ ≈ 0.77 =⇒ sin2 θ ≈ 0.23. (20)

∗ ∗ ∗

Now lets find the currents to which the vector fields W±µ , Zµ, and Aµ couple and the

strengths of those couplings. Of particular importance is the EM coupling strength e since it

acts as the unit of the conventionally normalized electric charge, so we would like to relate it

to the original SU(2)W ×U(1)Y couplings g2 and g1. But the weak currents and couplings are

also important.

Our starting point is the SU(2)W × U(1)Y symmetry currents JYµ , J
T1
µ , JT2

µ , JT3
µ of the

fermionic fields. Without going into the details of these currents — they are described in

detail in my notes on quarks and leptons — we can say that the original gauge fields Bµ(x)

and W a
µ (x) couple to these currents according to

Lnet ⊃ Lcurrent = −g2W
1
µ × J

µ
T1 − g2W

2
µ × J

µ
T2 − g2W

3
µ × J

µ
T3 − g1Bµ × JµY . (21)

Now let’s relate the original gauge fields to the vector fields of definite masses and electric

charges. Inverting eqs. (19) and (17), we obtain

W 1
µ =

1√
2
×W−µ +

1√
2
×W+

µ ,

W 2
µ =

i√
2
×W−µ −

i√
2
×W+

µ ,

W 3
µ = cos θ × Zµ + sin θ × Aµ ,

Bµ = − sin θ × Zµ + cos θ × Aµ .

(22)

Plugging these formulae into eq. (21) and re-arranging the terms, we find

Lcurrent = − g2√
2
W−µ ×

(
JµT1 − iJ

µ
T2

)
− g2√

2
W+
µ ×

(
JµT1 + iJµT2

)
− Zµ ×

(
g2 cos θJµT3 − g1 sin θ JµY

)
− Aµ ×

(
g2 sin θJµT3 + g1 cos θ JµY

)
,

(23)
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or in other words

Lcurrent = − g2√
2

(
W+
µ × J−µ + W−µ × J+µ

)
− g̃Zµ × JµZ − eAµ × JµEM (24)

where

J+µ = JµT1 − iJµT2 , J−µ = JµT1 + iJµT2 , (25)

are the charged weak currents,

g̃ × JµZ = g2 cos θJµT3 − g1 sin θ JµY (26)

is the neutral weak current (times the neutral weak coupling constant), and

e× JµEM = g2 sin θJµT3 + g1 cos θ JµY (27)

is the (conventionally normalized) electric current. Note that on the right hand side of this

formula g1 cos θ = g2 sin θ because of the way the weak mixing angle θ is related to the gauge

couplings, tan θ = g1/g2, cf. eq. (18). Consequently, we may identify

e = g2 sin θ = g1 cos θ =⇒ 1

e2
=

1

g2
2

(
1

sin2 θ
= 1 +

1

tan2 θ

)
=

1

g2
2

+
1

g2
1

(28)

and

JµEM = JµT3 + JµY . (29)

Note that this current does not depend on the gauge couplings or θ; instead, it’s the current

of the electric charge operator Q̂ = T̂ 3 + Ŷ which is the generator of the unbroken U(1)EM

gauge symmetry. Naturally, the EM field Aµ(x) — which is the gauge field of that U(1)EM —

should couple to precisely this symmetry current.

On the other hand, the Zµ is the gauge field of a spontaneously broken symmetry, so the

specific combination of the symmetry currents that couples to the Zµ depends on the weak
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mixing angle. Indeed, the coefficients of the two terms on the RHS of eq. (26) are quite different

and their ratio depends on g1/g2; specifically,

g2 × cos θ =
g2

2√
g2

2 + g2
1

=
√
g2

2 + g2
1 × cos2 θ,

g1 × cos θ =
g2

1√
g2

2 + g2
1

=
√
g2

2 + g2
1 × sin2 θ,

g1 × sin θ

g2 × cos θ
= tan2 θ.

(30)

Consequently, we may identify

g̃ =
√
g2

2 + g2
1 =

g2

cos θ
=

g1

sin θ
=

e

sin θ cos θ
(31)

and then the neutral weak current becomes

JµZ = cos2 θ × JµT3 − sin2 θ × JµY
= JµT3 − sin2 θ ×

(
JµT3 + JµY )

= JµT3 − sin2 θ × JµEM .

(32)

Note that the weak couplings g2 and g̃ are larger than the EM coupling e. Consequently, at

high energies much larger than the masses of W and Z particles, the weak interactions are not

weak at all — they are stronger them the EM interactions. But at low energies, the β-decays

and other processes mediated by the virtual W± or Z0 involve the propagators

W± propagator ∼ 1

q2 −M2
W

≈ −1

M2
W

,

Z0 propagator ∼ 1

q2 −M2
Z

≈ −1

M2
Z

,

(33)

so the overall weak amplitudes are

M ∼ g2
2E

2

M2
W

or M ∼ g̃2E2

M2
Z

. (34)

It’s not the couplings, it’s the small E2/M2
W or E2/M2

Z factors which make the weak interac-

tions weak at low energies!
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Let me briefly outline the Fermi’s effective theory of the low-energy weak interactions. The

low-energy processes do not produce any real W± or Z0 particles, but they do involve the weak

currents J±µ and JµX , which in turn give rise to the small W±µ (x) and Zµ(x) fields. To see how

this works at the classical level, consider the electroweak Lagrangian

L = −1

2
W−µνW

+µν + M2
WW

−
µ W

+µ − g2√
2

(
W+
µ × J−µ + W−µ × J+µ

)
− 1

4
ZµνZ

µν +
M2
Z

2
ZµZ

µ − g̃JµZZµ

+ terms involving the EM field Aµ and the Higgs h

and their interactions with the W±µ and the Zµ.

(35)

To the leading order of the perturbation theory, we may neglect the non-abelian terms here as

well as the interactions of the vector fields with the physical Higgs field h. Moreover, at low

momenta kµ � MW ,MZ , the kinetic terms for the W±µ and Zµ fields are much smaller than

the respective mass terms. Consequently, we may approximate

L ≈ M2
WW

−
µ W

+µ − g2√
2

(
W+
µ × J−µ + W−µ × J+µ

)
+

M2
Z

2
ZµZ

µ − g̃JµZZµ . (36)

The field equations stemming from this approximate Lagrangian are simply

M2
W ×W±µ ≈

g2√
2
× J±µ and M2

Z × Zµ ≈ g̃ × JµZ . (37)

Solving these equations and plugging the solutions back into the Lagrangian (36), we obtain

the effective current-current Lagrangian for the low-energy weak interactions,

Lweak
effective = − g2

2

2M2
W

× J−µ J+µ − g̃2

2M2
Z

× JZµJ
µ
Z . (38)

This effective Lagrangian is called the Fermi Lagrangian — and the corresponding effective

theory of weak interactions is called the Fermi Theory — since Enrico Fermi wrote it down

back in 1933. Or rather, he wrote down

L = −2
√

2G× J−µ J+µ (39)

since only the charged-current weak interactions were known in those days, and the weak

coupling G was an input parameter to be determined experimentally. Today G is called the
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Fermi constant and we know how to relate it to the vacuum expectation value of the Higgs

field:

G =
1

4
√

2

g2
2

M2
W

=
1√
2
× 1

v2
. (40)

The neutral-coupling weak interactions have a separate Fermi-like constant, but in the

GWS electroweak theory it has exactly the same value as the Fermi constant for the charged-

current weak interactions:

Lweak
effective = −2

√
2G
(
J−µ J

+µ + ρ× JZµJ
µ
Z

)
for ρ = 1. (41)

Indeed,

G× ρ =
1

4
√

2

g̃2

M2
Z

=⇒ ρ =
g̃2

M2
Z

/
g2

2

M2
W

=
g̃2

g2
2

×
M2
W

M2
Z

=
1

cos2 θ
× cos2 θ = 1. (42)

Experimentally, ρ = 1 with high precision, and it is a strong evidence for the GWS theory.
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