Poisson Brackets and Commutator Brackets

Both classical mechanics and quantum mechanics use bi-linear brackets of variables with similar algebraic properties. In classical mechanics the variables are functions of the canonical coordinates and momenta, and the Poisson bracket of two such variables $A(q, p)$ and $B(q, p)$ are defined as

$$
\begin{equation*}
[A, B]_{P} \stackrel{\text { def }}{=} \sum_{i}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \tag{1}
\end{equation*}
$$

In quantum mechanics the variables are linear operators in some Hilbert space, and the commutator bracket of two operators is

$$
\begin{equation*}
[A, B]_{C} \stackrel{\text { def }}{=} A B-B A . \tag{2}
\end{equation*}
$$

Both types of brackets have similar algebraic properties:

1. Linearity: $\left[\alpha_{1} A_{1}+\alpha_{2} A_{2}, B\right]=\alpha_{1}\left[A_{1}, B\right]+\alpha_{2}\left[A_{2}, B\right]$ and $\left[A, \beta_{1} B_{1}+\beta_{2} B_{2}\right]=\beta_{1}\left[A, B_{1}\right]+$ $\beta_{2}\left[A, B_{2}\right]$.
2. Antisymmetry: $[A, B]=-[B, A]$.
3. Leibniz rules: $[A B, C]=A[B, C]+[A . C] B$ and $[A, B C]=B[A, C]+[A, B] C$.
4. Jacobi Identity: $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$.

Theorem: For non-commuting variables, any bracket $[A, B]$ with the above algebraic properties 1 through 4 is proportional to the commutator bracket:

$$
\begin{equation*}
[A, B]=c(A B-B A) \tag{3}
\end{equation*}
$$

for a universal constant c (same c for all variables). In particular, generalization of classical Poisson brackets to quantum mechanics leads to

$$
\begin{equation*}
[\hat{A}, \hat{B}]_{P}=\frac{\hat{A} \hat{B}-\hat{B} \hat{A}}{i \hbar} \tag{4}
\end{equation*}
$$

Proof: Take any 4 variables A, B, U, V and calculate $[A U, B V]$ using the Leibniz rules, first for the $A U$ and then for the $B V$:

$$
\begin{align*}
{[A U, B V] } & =A[U, B V]+[A, B V] U \\
& =A B[U, V]+A[U, B] V+B[A, V] U+[A, B] V U \tag{5}
\end{align*}
$$

OOH , if we use the two Leibniz rules in the opposite order we get a different expression

$$
\begin{align*}
{[A U, B V] } & =B[A U, V]+[A U, B] V \tag{6}\\
& =B A[U, V]+B[A, V] U+A[U, B] V+[A, B] U V
\end{align*}
$$

To make sure the two expressions are equal to each other we need

$$
\begin{gather*}
A B[U, V]+[A, B] V U=B A[U, V]+[A, B] U V \\
\Downarrow \\
(A B-B A)[U, V]=[A, B](U V-V U) \tag{7}\\
\Downarrow \\
{[U, V](U V-V U)^{-1}=(A B-B A)^{-1}[A, B]}
\end{gather*}
$$

On the last line here, the LHS depends only on the U and V while the RHS depends only on the A and B, and the only way a relation like that can work for any unrelated variables is if the ratios on both sides of equations are equal to the same universal constant c, thus

$$
\begin{equation*}
[A, B]=c(A B-B A) \quad \text { and } \quad[U, V]=c(U V-V U) \tag{8}
\end{equation*}
$$

Quod erat demonstrandum.

