
PHY–396 K. Problem set #3. Due September 22.

1. The first problem is about the angular momentum in presence of a magnetic monopole.

For simplicity, we assume a single monopole of magnetic charge M which does not move

but remains static at x = 0.

Let’s put a static electric charge Q at some point x = a near the monopole. Together, the

electric field of the charge and the magnetic field of the monopole have non-zero Poynting

vector S = 1
4πc E×B. When integrated over the space, this Poynting vector has zero net

momentum but non-zero angular momentum

L =

∫
d3xx× S = −QM

c
na (1)

where na is the unit vector in the direction of the electric charge (from the monopole’s

position at the origin). Note that this integral is independent from the distance a between

the monopole and the charge — they could be light-years apart, and still produce the same

angular momentum. Also note that when the magnetic charge M and the electric charge

Q obey Dirac’s quantization condition

Q×M =
h̄c

2
× an integer, (2)

the angular momentum (1) has integral or half-integral magnitude in units of h̄.

(a) In lieu of working out the integral (1) by yourself, read the solution in these notes by

Prof. James Wheeler at the University of Utah.

Now consider a quantum particle of electric charge q moving in the monopole’s magnetic

field superimposed on some spherically symmetric electric potential V (r). For simplicity,

take the particle to be spinless and non-relativistic, so its Hamiltonian has form

Ĥ =
1

2m
~̂π
2

+ qV (r̂) (3)

where ~̂π = p̂− q
cA(x) is the kinematic momentum of the particle rather that its canonical

momentum p. In the coordinate basis, ~̂π = −ih̄ ~D, the covariant gradient. And in any basis,
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the kinematic momenta and the coordinate operators obey the following commutation

relations:

[x̂i, x̂j ] = 0,

[x̂i, π̂j ] = ih̄δij ,

[π̂i, π̂j ] =
ih̄q

c
εijkB̂k =

ih̄qM

c
·
εijkx̂

k

r̂3
.

(4)

Because of the angular momentum (1), the net orbital angular momentum operator for the

moving particle has form

L̂ = x̂× ~̂π − qM

c

x̂

r̂
. (5)

(b) Verify that this angular momentum operator obeys the usual commutation relations:

[L̂i, x̂j ] = ih̄εijk x̂k ,

[L̂i, π̂j ] = ih̄εijk π̂k ,

[L̂i, L̂j ] = ih̄εijk L̂k .

(6)

(c) Verify that the angular momentum (5) is conserved, that is, it commutes with the

Hamiltonian (3).

(d) In spherical coordinates (r, θ, φ), the vector potential of the magnetic monopole has

form

~A(r, θ, φ) = m · ±1− cos θ

r sin θ
· ~eφ , (7)

where the two signs correspond to two possible gauge choices as to whether the Dirac

string should hang below the dyon (θ = π) or above it (θ = 0).

Show that with these gauge choices the operator L̂z becomes

L̂z = −ih̄ ∂
∂φ
∓ qM

c
(8)

(in the spherical coordinate representation).
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(e) Use eq. (8) — plus the usual quantization rules for the eigenvalues h̄2`(` + 1) of L̂2

and h̄m of L̂z — to show that the allowed values of ` for the particle moving around

the monopole are

` =
|qM |
h̄c

,
|qM |
h̄c

+ 1,
|qM |
h̄c

+ 2, . . . . (9)

Note: for a half-integral QM/h̄c, the allowed values of the orbital angular momentum

are half-integral rather than integral!

2. Next, consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (10)

(in h̄ = c = 1 units) where the current Jµ(x) is a fixed source for the Aµ(x) field. Because

of the mass term, the Lagrangian (10) is not gauge invariant. However, we assume that

the current Jµ(x) is conserved, ∂µJ
µ(x) = 0.

Back in homework set#1 (problem 1) we have derived the Euler–Lagrange equations for

the massive vector field. In this problem, we develop the Hamiltonian formalism for the

Aµ(x). Our first step is to identify the canonically conjugate “momentum” fields.

(a) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not

have a canonical conjugate! Consequently,

H =

∫
d3x

(
−Ȧ(x) · E(x) − L

)
. (11)

(b) Show that in terms of the A, E, and A0 fields, and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(12)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.
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Specifically, we have

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂(∇A0)

∣∣∣∣
x

= 0. (13)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

≡ −
[
∂H
∂E
− ∇i

∂H
∂(∇iE)

]
(x,t)

,

∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

≡ +

[
∂H
∂A
− ∇i

∂H
∂(∇iA)

]
(x,t)

.

(14)

(c) Write down the explicit form of all these equations.

(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler–Lagrange equations for the Aµ(x), namely

(∂µ∂µ +m2)Aν = ∂ν(∂µA
µ) + Jν (15)

and hence ∂µA
µ(x) = 0 and (∂ν∂ν +m2)Aµ = 0 when ∂µJ

µ ≡ 0, cf. homework #1.

3. Finally, let’s quantize the massive vector field. Since classically the −E(x) fields are canon-

ically conjugate momenta to the A(x) fields, the corresponding quantum fields Ê(x) and

Â(x) satisfy the canonical equal-time commutation relations

[Âi(x, t), Âj(y, t)] = 0,

[Êi(x, t), Êj(y, t)] = 0,

[Âi(x, t), Êj(y, t)] = −iδijδ(3)(x− y)

(16)

(in the h̄ = c = 1 units). The currents also become quantum fields Ĵµ(x, t), but they

are composed of some kind of charged degrees of freedom rather than the vector fields

in question. Consequently, at equal times the currents Ĵµ(x, t) commute with both the

Ê(y, t) and the Â(y, t) fields.
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The classical A0(x, t) field does not have a canonical conjugate and its equation of motion

does not involve time derivatives. In the quantum theory, Â0(x, t) satisfies a similar time-

independent constraint

m2Â0(x, t) = Ĵ0(x, t) − ∇ · Ê(x, t), (17)

but from the Hilbert space point of view this is an operatorial identity rather than an

equation of motion. Consequently, the commutation relations of the scalar potential field

follow from eqs. (16); in particular, at equal times the Â0(x, t) commutes with the Ê(y, t)

but does not commute with the Â(y, t).

Finally, the Hamiltonian operator follows from the classical eq. (12), namely

Ĥ =

∫
d3x

{
1
2Ê

2 + Â0

(
Ĵ0 −∇ · Ê

)
− 1

2m
2Â2

0 + 1
2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
=

∫
d3x

{
1
2Ê

2 +
1

2m2

(
Ĵ0 −∇ · Ê

)2
+ 1

2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
(18)

where the second line follows from the first and eq. (17).

Your task is to calculate the commutators [Âi(x, t), Ĥ] and [Êi(x, t), Ĥ] and write down

the Heisenberg equations for the quantum vector fields. Make sure those equations are

similar to the Hamilton equations for the classical fields.
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