PHY-396 K. Problem set #4. Due September 29, 2015.

1. First, an exercise in bosonic commutation relations
(gl = 0, [af,al] = 0, [ag.a4k] = dap. (1)

T

(a) Calculate the commutators [&adﬂ,djy], [&Edﬂ,dé], [deﬂ,didé], and [dL

alias g, ).
(b) For a single pair of & and a! operators, show that for any analytic function f(z) =

fo+ fiz+ fox? + -
[a, f(ah] = +f/(a") and [af, f(a)] = —f'(a) (2)

where f(a) % fo+ fia + f2(a)? + - and likewise f(ah) & fo + fiaf + fo(ah)2 + .

(c) Show that ehgfe—ct = gt 4 ¢, e geci' = g — ¢, hence for any analytic function f,

T T

ef(ahe ™ = f(a'+¢) and €9 fla)e @ = f(a—-c). (3)
(d) Now generalize (b) and (c) to any set of creation and annihilation operators al, and
T

aq. Show that for any analytic function f(multiple ag) of creation operators but not
of the annihilation operators or a function f(multiple a4 ) of the annihilation operators

but not of the creation operators,

0@
Jag

ca&a> = f(each &L — &Ta + Ca), (4)

2
exp <Za CQ&L) f(a)exp (— Za cadg) = f(each a, — a, — ca).

Y



. Now consider an O(N) symmetric Lagrangian for N interacting real scalar fields,

o , 2 N N2 2
£ - 33’ - 3 - g (Yed) )
a=1 a=1

a=1

By the Noether theorem, the continuous SO(N) subgroup of the O(N) symmetry gives

rise to 3N(IN — 1) conserved currents
Jh(x) = —J (x) = Dg(x) HPy(x) — Pp(z) I Py(x). (6)

In the quantum field theory, these currents become operators

~

Jap(x,t) = —Jpa(x,1) = —Bu(x,1)VDy(x, 1) + Bp(x,1)VD,(x, 1), -
Ac?b(x7t) = - Al?a(x’ t) = (i)a(X, t)ﬂb(xv t) - (i)b(X, t)f_[a(X, t)

This problem is about the net charge operators
Qult) = ~Qu®) = [d*xJ%x) = [x (BalxO(x.0) ~ By(x Ollx D). (9

(a) Write down the equal-time commutation relations for the quantum $, and T, fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that

~

[Qab(t),éc(x, same t)} = iébc(i)a(x,t) — iéac@b(x, t),
(9)

N

[Qab(t),ﬂc(x, same t)} = iébcﬂa(x,t) — iéacf[b(x,t),

(c) Show that the all the Qa commute with the Hamiltonian operator H. In the Heisen-

berg picture, this makes all the charge operators Qab time independent.

(d) Verify that the Qa obey commutation relations of the SO(N) generators,
[Qaba@cd} = —i0pQua) = —i04cQad + 106ac@ba + 0paQac — 1044Qpc. (10)

Now let’s take A — 0 and focus on the free fields. Let’s work in the Schrodinger picture and

expand all the fields into creation and annihilation operators &Tp,a and apq (a=1,...,N).



(e) Show that in terms of creation and annihilation operators, the charges (8) become
Quw = > (—m;aap’b + z'&;bdp,b). (11)

(f) Use the commutation relations (1) for the creation and annihilation operators (and
the results of problem 1.a) to verify that the operators (11) obey the commutation
relations (10).

Finally, for N = 2 the SO(2) symmetry is the phase symmetry of one complex field
® = (®1 +iPs)/v/2 and its conjugate ®* = (&1 — i®s)/+/2. In the Fock space, they give

rise to particles and anti-particles of opposite charges.

(2) Expand the fields ®(x) and ®'(x) into the creation and annihilation operators for the

particles and antiparticles,

Up,1 + Yap2

ap = T are particle annihilation operators,
2 dp 1 i&p 2 . . R
bp = T are antiparticle annihilation operators,
4 V2, (12)
At ap 1 Zap 2 . .
ap = T are particle creation operators,
. At
A a, 1+t
bl = L P2 g antiparticle creation operators.

(h) Show that in terms of the operators (12),

QQI = _Q12 = Nparticles - Nantiparticles = Z (dep - 6-Ir)ép) (13)
P



3. An operator acting on identical bosons can be described in terms of N—particle wave
functions (the first-quantized formalism) or in terms of creation and annihilation operators
in the Fock space (the second-quantized formalism). This problem is about converting the

operators from one formalism to another.

Let’s start with a discrete orthonormal basis {|a)}, of single-particle wave states with
wave-functions ¢, (x). (By abuse of notations, x = (x,y, z, spin, etc.). The corresponding

basis of the N-boson Hilbet space comprises the states
0, B, w) = —=al,--akal, [0) (14)

with totally-symmetrized wave functions

distinct permutations

of (a,8,...,w)
1
Gapew (X1, X2 -, XN) = VD Z Pa(x1) X @z(x2) X -+ X dp(xn)
(&,B,...,0)
all N! permutations
1 of (a,f,...,.w)
= = 2 falx)xdglx) o x dalx),
' (&,5,...@)

(15)
where 7" =[] n,! is the number of trivial permutations between coincident entries of the
list (o, B3, ...,w) (for example, @ ++ B when « and 8 happen to be equal), and D = N!/T

is the number of distinct permutations.

To make sure that the states (14) have the wavefunctions (15), the wave-function picture of
the creation and the annihilation operators should be as follows: Given an N-boson state
|N, ) with a totally-symmetric wavefunction ¥ (x1,...,xy),

the state [N + 1,¢') = il |N, %) has a totally-symmetric (N + 1)-particle wave function

N+1

In particular, for N =0, ¢'(21) = ¢a(x1). Also,



the state [N — 1,¢") = aq | N, ) has a totally-symmetric (N — 1)-particle wave function
w//(Xh . ./XN,I) = \/N d3XN ¢:<)¢(XN) X 1/)(X17 o, XN-1, XN). (17)

In particular, for N = 1, ¢”(no arguments) = (¢, |1)). Also, for N = 0 we simply define

ia 0) 0.

(a) Verify the commutation relations (1) for these operators.

(b) Verify that the a, and the d:& are hermitian conjugates of each other by checking that

for any N > 1 and any totally-symmetric wave functions ¥ (x1,...,Xy)
and Qﬂ(Xl, R ,XN_l).

(c) Verify that the states (14) indeed have the wavefunctions (15).

Now let’s move on to the the next subject, namely the one-body operators — the additive
operators acting on one particle at a time. In the first-quantized formalism they act on

N-—particle states according to

N
Agle)t = Z/All(ith particle) (19)
i=1

where A; is some kind of a one-particle operator (such as momentum p, or kinetic energy
ﬁf)z, or potential V(x), etc., etc.). In the second-quantized formalism such operators
become
2(2 A At a
A = D" {al A1) by (20)
o,

(d) Verify that the two operators have the same matrix elements between any two N-boson
ot > a1 (2
states |V, v0) and [N, ), (N, 9 AL} [N, ) = (N, 9] AL} [N, ).
Hint: use A; = Za,ﬂ la) (o] A1 |B) (B



(e) Now let A® B®) and ¢?)

et Prots het D€ three second-quantized net one-body operators corre-

sponding to the single-particle operators /11, El, and C.
Show that if Cy = [A1, By] then G2 = [A%), B,

net —

Finally, consider the two-body operators, i.e. additive operators acting on two particles at
a time. Given a two-particle operator By — such as V(x1 —X2) — the net B operator acts

in the first-quantized formalism according to

net = 3 Z By (i*" and 7' particles), (21)
i#j

and in the second-quantized formalism according to

BE = 13 ((al® (8))Ba(ly) @ 18)) alalasa, . (22)
a,B,7,0

Note: in this formula, it is OK to use the un-symmetrized 2-particle states (a| ® (|

and |7) ® |6), and hence the un-symmetrized matrix elements of the Bs. At the level
(2)

net>

of the second-quantized operator B the Bose symmetry is automatically provided by

&Ea% = a%aL and agay = a~ag, even for un-symmetrized matrix elements of the BQ.

(f) Similar to part (d), show the operators (21) and (22) have the same matrix elements
between any two N-boson states, (N, | Anet IN, ) = (N, | AEIQG),E IN, ) for any (N, |
and | N, ).

(g) Now let A1 be a one- particle operator, let By and C5 be two-body operators, and let
1[1(2) B( ) and O( )

net’ net» net

egs. (20) and (22).

be the corresponding second-quantized operators according to

net’ —net

Show that if Cy = [(Al(ﬁt) +Al(2nd)> ,BQ] then C'?) = [A@) B@)],



