PHY-396 K. Problem set \#4. Due September 29, 2015.

1. First, an exercise in bosonic commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0, \quad\left[\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}\right]=0, \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\right]=\delta_{\alpha \beta} \tag{1}
\end{equation*}
$$

(a) Calculate the commutators $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\delta}\right],\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}, \hat{a}_{\gamma}^{\dagger} \hat{a}_{\delta}\right]$, and $\left[\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma} \hat{a}_{\delta}, \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu}\right]$.
(b) For a single pair of \hat{a} and \hat{a}^{\dagger} operators, show that for any analytic function $f(x)=$ $f_{0}+f_{1} x+f_{2} x^{2}+\cdots$,

$$
\begin{equation*}
\left[\hat{a}, f\left(\hat{a}^{\dagger}\right)\right]=+f^{\prime}\left(\hat{a}^{\dagger}\right) \quad \text { and } \quad\left[\hat{a}^{\dagger}, f(\hat{a})\right]=-f^{\prime}(\hat{a}) \tag{2}
\end{equation*}
$$

where $f(\hat{a}) \stackrel{\text { def }}{=} f_{0}+f_{1} \hat{a}+f_{2}(\hat{a})^{2}+\cdots$ and likewise $f\left(\hat{a}^{\dagger}\right) \stackrel{\text { def }}{=} f_{0}+f_{1} \hat{a}^{\dagger}+f_{2}\left(\hat{a}^{\dagger}\right)^{2}+\cdots$.
(c) Show that $e^{c \hat{a}} \hat{a}^{\dagger} e^{-c \hat{a}}=\hat{a}^{\dagger}+c, e^{c \hat{a}^{\dagger}} \hat{a} e^{-c \hat{a}^{\dagger}}=\hat{a}-c$, hence for any analytic function f,

$$
\begin{equation*}
e^{c \hat{a}} f\left(\hat{a}^{\dagger}\right) e^{-c \hat{a}}=f\left(\hat{a}^{\dagger}+c\right) \quad \text { and } \quad e^{c \hat{a}^{\dagger}} f(\hat{a}) e^{-c \hat{a}^{\dagger}}=f(\hat{a}-c) \tag{3}
\end{equation*}
$$

(d) Now generalize (b) and (c) to any set of creation and annihilation operators $\hat{a}_{\alpha}^{\dagger}$ and \hat{a}_{α}. Show that for any analytic function f (multiple $\hat{a}_{\alpha}^{\dagger}$) of creation operators but not of the annihilation operators or a function f (multiple \hat{a}_{α}) of the annihilation operators but not of the creation operators,

$$
\begin{align*}
{\left[\hat{a}_{\alpha}, f\left(\hat{a}^{\dagger}\right)\right]=+\frac{\partial f\left(\hat{a}^{\dagger}\right)}{\partial \hat{a}_{\alpha}^{\dagger}}, \quad\left[\hat{a}_{\alpha}^{\dagger}, f(\hat{a})\right] } & =-\frac{\partial f(\hat{a})}{\partial \hat{a}_{\alpha}}, \\
\exp \left(\sum_{\alpha} c_{\alpha} \hat{a}_{\alpha}\right) f\left(\hat{a}^{\dagger}\right) \exp \left(-\sum_{\alpha} c_{\alpha} \hat{a}_{\alpha}\right) & =f\left(\text { each } \hat{a}_{\alpha}^{\dagger} \rightarrow \hat{a}_{\alpha}^{\dagger}+c_{\alpha}\right), \tag{4}\\
\exp \left(\sum_{\alpha} c_{\alpha} \hat{a}_{\alpha}^{\dagger}\right) f(\hat{a}) \exp \left(-\sum_{\alpha} c_{\alpha} \hat{a}_{\alpha}^{\dagger}\right) & =f\left(\text { each } \hat{a}_{\alpha} \rightarrow \hat{a}_{\alpha}-c_{\alpha}\right) .
\end{align*}
$$

2. Now consider an $O(N)$ symmetric Lagrangian for N interacting real scalar fields,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{a=1}^{N}\left(\partial_{\mu} \Phi_{a}\right)^{2}-\frac{m^{2}}{2} \sum_{a=1}^{N} \Phi_{a}^{2}-\frac{\lambda}{24}\left(\sum_{a=1}^{N} \Phi_{a}^{2}\right)^{2} \tag{5}
\end{equation*}
$$

By the Noether theorem, the continuous $S O(N)$ subgroup of the $O(N)$ symmetry gives rise to $\frac{1}{2} N(N-1)$ conserved currents

$$
\begin{equation*}
J_{a b}^{\mu}(x)=-J_{b a}^{\mu}(x)=\Phi_{a}(x) \partial^{\mu} \Phi_{b}(x)-\Phi_{b}(x) \partial^{\mu} \Phi_{a}(x) \tag{6}
\end{equation*}
$$

In the quantum field theory, these currents become operators

$$
\begin{align*}
\hat{\mathbf{J}}_{a b}(\mathbf{x}, t) & =-\hat{\mathbf{J}}_{b a}(\mathbf{x}, t)=-\hat{\Phi}_{a}(\mathbf{x}, t) \nabla \hat{\Phi}_{b}(\mathbf{x}, t)+\hat{\Phi}_{b}(\mathbf{x}, t) \nabla \hat{\Phi}_{a}(\mathbf{x}, t) \\
\hat{J}_{a b}^{0}(\mathbf{x}, t) & =-\hat{J}_{b a}^{0}(\mathbf{x}, t)=\hat{\Phi}_{a}(\mathbf{x}, t) \hat{\Pi}_{b}(\mathbf{x}, t)-\hat{\Phi}_{b}(\mathbf{x}, t) \hat{\Pi}_{a}(\mathbf{x}, t) \tag{7}
\end{align*}
$$

This problem is about the net charge operators

$$
\begin{equation*}
\hat{Q}_{a b}(t)=-\hat{Q}_{b a}(t)=\int d^{3} \mathbf{x} \hat{J}_{a b}^{0}(\mathbf{x})=\int d^{3} \mathbf{x}\left(\hat{\Phi}_{a}(\mathbf{x}, t) \hat{\Pi}_{b}(\mathbf{x}, t)-\hat{\Phi}_{b}(\mathbf{x}, t) \hat{\Pi}_{a}(\mathbf{x}, t)\right) . \tag{8}
\end{equation*}
$$

(a) Write down the equal-time commutation relations for the quantum $\hat{\Phi}_{a}$ and $\hat{\Pi}_{a}$ fields. Also, write down the Hamiltonian operator for the interacting fields.
(b) Show that

$$
\begin{align*}
& {\left[\hat{Q}_{a b}(t), \hat{\Phi}_{c}(\mathbf{x}, \text { same } t)\right]=i \delta_{b c} \hat{\Phi}_{a}(\mathbf{x}, t)-i \delta_{a c} \hat{\Phi}_{b}(\mathbf{x}, t),} \\
& {\left[\hat{Q}_{a b}(t), \hat{\Pi}_{c}(\mathbf{x}, \text { same } t)\right]=i \delta_{b c} \hat{\Pi}_{a}(\mathbf{x}, t)-i \delta_{a c} \hat{\Pi}_{b}(\mathbf{x}, t),} \tag{9}
\end{align*}
$$

(c) Show that the all the $\hat{Q}_{a b}$ commute with the Hamiltonian operator \hat{H}. In the Heisenberg picture, this makes all the charge operators $\hat{Q}_{a b}$ time independent.
(d) Verify that the $\hat{Q}_{a b}$ obey commutation relations of the $S O(N)$ generators,

$$
\begin{equation*}
\left[\hat{Q}_{a b}, \hat{Q}_{c d}\right]=-i \delta_{[c[b[b} \hat{Q}_{a] d]} \equiv-i \delta_{b c} \hat{Q}_{a d}+i \delta_{a c} \hat{Q}_{b d}+i \delta_{b d} \hat{Q}_{a c}-i \delta_{a d} \hat{Q}_{b c} \tag{10}
\end{equation*}
$$

Now let's take $\lambda \rightarrow 0$ and focus on the free fields. Let's work in the Schrödinger picture and expand all the fields into creation and annihilation operators $\hat{a}_{\mathbf{p}, a}^{\dagger}$ and $\hat{a}_{\mathbf{p}, a}(a=1, \ldots, N)$.
(e) Show that in terms of creation and annihilation operators, the charges (8) become

$$
\begin{equation*}
\hat{Q}_{a b}=\sum_{\mathbf{p}}\left(-i \hat{a}_{\mathbf{p}, a}^{\dagger} \hat{a}_{\mathbf{p}, b}+i \hat{a}_{\mathbf{p}, b}^{\dagger} \hat{a}_{\mathbf{p}, b}\right) . \tag{11}
\end{equation*}
$$

(f) Use the commutation relations (1) for the creation and annihilation operators (and the results of problem 1.a) to verify that the operators (11) obey the commutation relations (10).

Finally, for $N=2$ the $S O(2)$ symmetry is the phase symmetry of one complex field $\Phi=\left(\Phi_{1}+i \Phi_{2}\right) / \sqrt{2}$ and its conjugate $\Phi^{*}=\left(\Phi_{1}-i \Phi_{2}\right) / \sqrt{2}$. In the Fock space, they give rise to particles and anti-particles of opposite charges.
(g) Expand the fields $\Phi(\mathbf{x})$ and $\Phi^{\dagger}(\mathbf{x})$ into the creation and annihilation operators for the particles and antiparticles,

$$
\begin{align*}
\hat{a}_{\mathbf{p}} & =\frac{\hat{a}_{\mathbf{p}, 1}+i \hat{a}_{\mathbf{p}, 2}}{\sqrt{2}} \text { are particle annihilation operators, } \\
\hat{b}_{\mathbf{p}} & =\frac{\hat{a}_{\mathbf{p}, 1}-i \hat{a}_{\mathbf{p}, 2}}{\sqrt{2}} \text { are antiparticle annihilation operators, } \\
\hat{a}_{\mathbf{p}}^{\dagger} & =\frac{\hat{a}_{\mathbf{p}, 1}^{\dagger}-i \hat{a}_{\mathbf{p}, 2}^{\dagger}}{\sqrt{2}} \text { are particle creation operators, } \tag{12}\\
\hat{b}_{\mathbf{p}}^{\dagger} & =\frac{\hat{a}_{\mathbf{p}, 1}^{\dagger}+i \hat{a}_{\mathbf{p}, 2}^{\dagger}}{\sqrt{2}} \text { are antiparticle creation operators. }
\end{align*}
$$

(h) Show that in terms of the operators (12),

$$
\begin{equation*}
\hat{Q}_{21}=-\hat{Q}_{12}=\hat{N}_{\text {particles }}-\hat{N}_{\text {antiparticles }}=\sum_{\mathbf{p}}\left(\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}-\hat{b}_{\mathbf{p}}^{\dagger} \hat{b}_{\mathbf{p}}\right) \tag{13}
\end{equation*}
$$

3. An operator acting on identical bosons can be described in terms of N-particle wave functions (the first-quantized formalism) or in terms of creation and annihilation operators in the Fock space (the second-quantized formalism). This problem is about converting the operators from one formalism to another.

Let's start with a discrete orthonormal basis $\{|\alpha\rangle\}_{\alpha}$ of single-particle wave states with wave-functions $\phi_{\alpha}(\mathbf{x})$. (By abuse of notations, $\mathbf{x}=(x, y, z, \operatorname{spin}$, etc.). The corresponding basis of the N-boson Hilbet space comprises the states

$$
\begin{equation*}
|\alpha, \beta, \cdots, \omega\rangle=\frac{1}{\sqrt{T}} \hat{a}_{\omega}^{\dagger} \cdots \hat{a}_{\beta}^{\dagger} \hat{a}_{\alpha}^{\dagger}|0\rangle \tag{14}
\end{equation*}
$$

with totally-symmetrized wave functions

$$
\begin{align*}
\phi_{\alpha \beta \cdots \omega}\left(\mathbf{x}_{1}, \mathbf{x}_{2} \ldots, \mathbf{x}_{N}\right) & =\frac{1}{\sqrt{D}} \sum_{\tilde{\alpha}, \tilde{\beta}, \ldots, \tilde{\omega})}^{\substack{\text { distinct permutations } \\
\text { of }(\alpha, \beta, \ldots, \omega)}} \phi_{\tilde{\alpha}}\left(\mathbf{x}_{1}\right) \times \phi_{\tilde{\beta}}\left(\mathbf{x}_{2}\right) \times \cdots \times \phi_{\tilde{\omega}}\left(\mathbf{x}_{N}\right) \\
& =\frac{1}{\sqrt{T \times N!}} \sum_{(\tilde{\alpha}, \tilde{\beta}, \ldots, \tilde{\omega})}^{\text {all }} \sum_{\substack{N!\text { permutations } \\
\text { of }(\alpha, \beta, \ldots, \omega)}} \phi_{\tilde{\alpha}}\left(\mathbf{x}_{1}\right) \times \phi_{\tilde{\beta}}\left(\mathbf{x}_{2}\right) \times \cdots \times \phi_{\tilde{\omega}}\left(\mathbf{x}_{N}\right),
\end{align*}
$$

where $T=\prod_{\gamma} n_{\gamma}$! is the number of trivial permutations between coincident entries of the list $(\alpha, \beta, \ldots, \omega)$ (for example, $\alpha \leftrightarrow \beta$ when α and β happen to be equal), and $D=N!/ T$ is the number of distinct permutations.

To make sure that the states (14) have the wavefunctions (15), the wave-function picture of the creation and the annihilation operators should be as follows: Given an N-boson state $|N, \psi\rangle$ with a totally-symmetric wavefunction $\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$, the state $\left|N+1, \psi^{\prime}\right\rangle=\hat{a}_{\alpha}^{\dagger}|N, \psi\rangle$ has a totally-symmetric $(N+1)$-particle wave function

$$
\begin{equation*}
\psi^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{N+1}\right)=\frac{1}{\sqrt{N+1}} \sum_{i=1}^{N+1} \phi_{\alpha}\left(\mathbf{x}_{i}\right) \times \psi\left(\mathrm{x}_{1}, \ldots, \mathbf{x}_{i}, \ldots, \mathbf{x}_{N+1}\right) . \tag{16}
\end{equation*}
$$

In particular, for $N=0, \psi^{\prime}\left(x_{1}\right)=\phi_{\alpha}\left(x_{1}\right)$. Also,
the state $\left|N-1, \psi^{\prime \prime}\right\rangle=\hat{a}_{\alpha}|N, \psi\rangle$ has a totally-symmetric ($N-1$)-particle wave function

$$
\begin{equation*}
\psi^{\prime \prime}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)=\sqrt{N} \int d^{3} \mathbf{x}_{N} \phi_{\alpha}^{*}\left(\mathbf{x}_{N}\right) \times \psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}, \mathbf{x}_{N}\right) \tag{17}
\end{equation*}
$$

In particular, for $N=1, \psi^{\prime \prime}$ (no arguments) $=\left\langle\phi_{\alpha} \mid \psi\right\rangle$. Also, for $N=0$ we simply define $\hat{a}_{\alpha}|0\rangle \stackrel{\text { def }}{=} 0$.
(a) Verify the commutation relations (1) for these operators.
(b) Verify that the \hat{a}_{α} and the $\hat{a}_{\alpha}^{\dagger}$ are hermitian conjugates of each other by checking that

$$
\begin{equation*}
\langle N-1, \widetilde{\psi}| \hat{a}_{\alpha}|N, \psi\rangle=\langle N, \psi| \hat{a}_{\alpha}^{\dagger}|N-1, \widetilde{\psi}\rangle^{*} \tag{18}
\end{equation*}
$$

for any $N \geq 1$ and any totally-symmetric wave functions $\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ and $\widetilde{\psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}\right)$.
(c) Verify that the states (14) indeed have the wavefunctions (15).

Now let's move on to the the next subject, namely the one-body operators - the additive operators acting on one particle at a time. In the first-quantized formalism they act on N-particle states according to

$$
\begin{equation*}
\hat{A}_{\mathrm{net}}^{(1)}=\sum_{i=1}^{N} \hat{A}_{1}\left(i^{\mathrm{th}} \text { particle }\right) \tag{19}
\end{equation*}
$$

where \hat{A}_{1} is some kind of a one-particle operator (such as momentum $\hat{\mathbf{p}}$, or kinetic energy $\frac{1}{2 m} \hat{\mathbf{p}}^{2}$, or potential $V(\hat{\mathbf{x}})$, etc., etc.). In the second-quantized formalism such operators become

$$
\begin{equation*}
\hat{A}_{\mathrm{net}}^{(2)}=\sum_{\alpha, \beta}\langle\alpha| \hat{A}_{1}|\beta\rangle \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta} . \tag{20}
\end{equation*}
$$

(d) Verify that the two operators have the same matrix elements between any two N-boson states $|N, \psi\rangle$ and $|N, \widetilde{\psi}\rangle,\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(1)}|N, \psi\rangle=\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(2)}|N, \psi\rangle$.
Hint: use $\hat{A}_{1}=\sum_{\alpha, \beta}|\alpha\rangle\langle\alpha| \hat{A}_{1}|\beta\rangle\langle\beta|$.
(e) Now let $\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}$, and $\hat{C}_{\text {net }}^{(2)}$ be three second-quantized net one-body operators corresponding to the single-particle operators \hat{A}_{1}, \hat{B}_{1}, and \hat{C}_{1}.
Show that if $\hat{C}_{1}=\left[\hat{A}_{1}, \hat{B}_{1}\right]$ then $\hat{C}_{\text {net }}^{(2)}=\left[\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}\right]$.
Finally, consider the two-body operators, i.e. additive operators acting on two particles at a time. Given a two-particle operator $\hat{B}_{2}-$ such as $V\left(\hat{\mathbf{x}}_{1}-\hat{\mathbf{x}}_{2}\right)$ - the net B operator acts in the first-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\text {net }}^{(1)}=\frac{1}{2} \sum_{i \neq j} \hat{B}_{2}\left(i^{\text {th }} \text { and } j^{\text {th }} \text { particles }\right), \tag{21}
\end{equation*}
$$

and in the second-quantized formalism according to

$$
\begin{equation*}
\hat{B}_{\text {net }}^{(2)}=\frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta}(\langle\alpha| \otimes\langle\beta|) \hat{B}_{2}(|\gamma\rangle \otimes|\delta\rangle) \hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger} \hat{a}_{\delta} \hat{a}_{\gamma} . \tag{22}
\end{equation*}
$$

Note: in this formula, it is OK to use the un-symmetrized 2-particle states $\langle\alpha| \otimes\langle\beta|$ and $|\gamma\rangle \otimes|\delta\rangle$, and hence the un-symmetrized matrix elements of the \hat{B}_{2}. At the level of the second-quantized operator $\hat{B}_{\text {net }}^{(2)}$, the Bose symmetry is automatically provided by $\hat{a}_{\alpha}^{\dagger} \hat{a}_{\beta}^{\dagger}=\hat{a}_{\beta}^{\dagger} \hat{a}_{\gamma}^{\dagger}$ and $\hat{a}_{\delta} \hat{a}_{\gamma}=\hat{a}_{\gamma} \hat{a}_{\delta}$, even for un-symmetrized matrix elements of the \hat{B}_{2}.
(f) Similar to part (d), show the operators (21) and (22) have the same matrix elements between any two N-boson states, $\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(1)}|N, \psi\rangle=\langle N, \widetilde{\psi}| \hat{A}_{\text {net }}^{(2)}|N, \psi\rangle$ for any $\langle N, \widetilde{\psi}|$ and $|N, \psi\rangle$.
(g) Now let \hat{A}_{1} be a one-particle operator, let \hat{B}_{2} and \hat{C}_{2} be two-body operators, and let $\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}$, and $\hat{C}_{\text {net }}^{(2)}$ be the corresponding second-quantized operators according to eqs. (20) and (22).
Show that if $\hat{C}_{2}=\left[\left(\hat{A}_{1}\left(1^{\text {st }}\right)+\hat{A}_{1}\left(2^{\text {nd }}\right)\right), \hat{B}_{2}\right]$ then $\hat{C}_{\text {net }}^{(2)}=\left[\hat{A}_{\text {net }}^{(2)}, \hat{B}_{\text {net }}^{(2)}\right]$.

