
PHY–396 K. Problem set #4. Due September 29, 2015.

1. First, an exercise in bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (1)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ], [â†αâβ, â

†
γ âδ], and [â†αâ

†
β âγ âδ, â

†
µâν ].

(b) For a single pair of â and â† operators, show that for any analytic function f(x) =

f0 + f1x+ f2x
2 + · · ·,

[â, f(â†)] = +f ′(â†) and [â†, f(â)] = −f ′(â) (2)

where f(â)
def
= f0 + f1â + f2(â)2 + · · · and likewise f(â†)

def
= f0 + f1â

† + f2(â
†)2 + · · ·.

(c) Show that ecâ â†e−câ = â† + c, ecâ
†
âe−câ

†
= â − c, hence for any analytic function f ,

ecâf(â†)e−câ = f(â† + c) and ecâ
†
f(â)e−câ

†
= f(â − c). (3)

(d) Now generalize (b) and (c) to any set of creation and annihilation operators â†α and

âα. Show that for any analytic function f(multiple â†α) of creation operators but not

of the annihilation operators or a function f(multiple âα) of the annihilation operators

but not of the creation operators,

[âα, f(â†)] = +
∂f(â†)

∂â†α
, [â†α, f(â)] = −∂f(â)

∂âα
,

exp
(∑

α
cαâα

)
f(â†) exp

(
−
∑

α
cαâα

)
= f(each â†α → â†α + cα),

exp
(∑

α
cαâ
†
α

)
f(â) exp

(
−
∑

α
cαâ
†
α

)
= f(each âα → âα − cα).

(4)
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2. Now consider an O(N) symmetric Lagrangian for N interacting real scalar fields,

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (5)

By the Noether theorem, the continuous SO(N) subgroup of the O(N) symmetry gives

rise to 1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (6)

In the quantum field theory, these currents become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) = Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t).
(7)

This problem is about the net charge operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0

ab(x) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
. (8)

(a) Write down the equal-time commutation relations for the quantum Φ̂a and Π̂a fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that [
Q̂ab(t), Φ̂c(x, same t)

]
= iδbcΦ̂a(x, t) − iδacΦ̂b(x, t),[

Q̂ab(t), Π̂c(x, same t)
]

= iδbcΠ̂a(x, t) − iδacΠ̂b(x, t),
(9)

(c) Show that the all the Q̂ab commute with the Hamiltonian operator Ĥ. In the Heisen-

berg picture, this makes all the charge operators Q̂ab time independent.

(d) Verify that the Q̂ab obey commutation relations of the SO(N) generators,

[
Q̂ab, Q̂cd

]
= −iδ[c[b[Q̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (10)

Now let’s take λ→ 0 and focus on the free fields. Let’s work in the Schrödinger picture and

expand all the fields into creation and annihilation operators â†p,a and âp,a (a = 1, . . . , N).
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(e) Show that in terms of creation and annihilation operators, the charges (8) become

Q̂ab =
∑
p

(
−iâ†p,aâp,b + iâ†p,bâp,b

)
. (11)

(f) Use the commutation relations (1) for the creation and annihilation operators (and

the results of problem 1.a) to verify that the operators (11) obey the commutation

relations (10).

Finally, for N = 2 the SO(2) symmetry is the phase symmetry of one complex field

Φ = (Φ1 + iΦ2)/
√

2 and its conjugate Φ∗ = (Φ1 − iΦ2)/
√

2. In the Fock space, they give

rise to particles and anti-particles of opposite charges.

(g) Expand the fields Φ(x) and Φ†(x) into the creation and annihilation operators for the

particles and antiparticles,

âp =
âp,1 + iâp,2√

2
are particle annihilation operators,

b̂p =
âp,1 − iâp,2√

2
are antiparticle annihilation operators,

â†p =
â†p,1 − iâ

†
p,2√

2
are particle creation operators,

b̂†p =
â†p,1 + iâ†p,2√

2
are antiparticle creation operators.

(12)

(h) Show that in terms of the operators (12),

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =
∑
p

(
â†pâp − b̂†pb̂p

)
. (13)
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3. An operator acting on identical bosons can be described in terms of N–particle wave

functions (the first-quantized formalism) or in terms of creation and annihilation operators

in the Fock space (the second-quantized formalism). This problem is about converting the

operators from one formalism to another.

Let’s start with a discrete orthonormal basis {|α〉}α of single-particle wave states with

wave-functions φα(x). (By abuse of notations, x = (x, y, z, spin, etc.). The corresponding

basis of the N -boson Hilbet space comprises the states

|α, β, · · · , ω〉 =
1√
T
â†ω · · · â

†
β â
†
α |0〉 (14)

with totally-symmetrized wave functions

φαβ···ω(x1,x2 . . . ,xN ) =
1√
D

distinct permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

=
1√

T ×N !

all N ! permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN ),

(15)

where T =
∏
γ nγ ! is the number of trivial permutations between coincident entries of the

list (α, β, . . . , ω) (for example, α↔ β when α and β happen to be equal), and D = N !/T

is the number of distinct permutations.

To make sure that the states (14) have the wavefunctions (15), the wave-function picture of

the creation and the annihilation operators should be as follows: Given an N -boson state

|N,ψ〉 with a totally-symmetric wavefunction ψ(x1, . . . ,xN ),

the state |N + 1, ψ′〉 = â†α |N,ψ〉 has a totally-symmetric (N + 1)-particle wave function

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

φα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1). (16)

In particular, for N = 0, ψ′(x1) = φα(x1). Also,
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the state |N − 1, ψ′′〉 = âα |N,ψ〉 has a totally-symmetric (N − 1)-particle wave function

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
α(xN )× ψ(x1, . . . ,xN−1,xN ). (17)

In particular, for N = 1, ψ′′(no arguments) = 〈φα|ψ〉. Also, for N = 0 we simply define

âα |0〉
def
= 0.

(a) Verify the commutation relations (1) for these operators.

(b) Verify that the âα and the â†α are hermitian conjugates of each other by checking that

〈N − 1, ψ̃| âα |N,ψ〉 = 〈N,ψ| â†α |N − 1, ψ̃〉∗ (18)

for any N ≥ 1 and any totally-symmetric wave functions ψ(x1, . . . ,xN )

and ψ̃(x1, . . . ,xN−1).

(c) Verify that the states (14) indeed have the wavefunctions (15).

∗ ∗ ∗

Now let’s move on to the the next subject, namely the one-body operators — the additive

operators acting on one particle at a time. In the first-quantized formalism they act on

N–particle states according to

Â
(1)
net =

N∑
i=1

Â1(i
th particle) (19)

where Â1 is some kind of a one-particle operator (such as momentum p̂, or kinetic energy

1
2m p̂2, or potential V (x̂), etc., etc.). In the second-quantized formalism such operators

become

Â
(2)
net =

∑
α,β

〈α| Â1 |β〉 â†αâβ . (20)

(d) Verify that the two operators have the same matrix elements between any two N -boson

states |N,ψ〉 and |N, ψ̃〉, 〈N, ψ̃| Â(1)
net |N,ψ〉 = 〈N, ψ̃| Â(2)

net |N,ψ〉.
Hint: use Â1 =

∑
α,β |α〉 〈α| Â1 |β〉 〈β|.
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(e) Now let Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net be three second-quantized net one-body operators corre-

sponding to the single-particle operators Â1, B̂1, and Ĉ1.

Show that if Ĉ1 = [Â1, B̂1] then Ĉ
(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.

Finally, consider the two-body operators, i.e. additive operators acting on two particles at

a time. Given a two-particle operator B̂2 — such as V (x̂1− x̂2) — the net B operator acts

in the first-quantized formalism according to

B̂
(1)
net = 1

2

∑
i6=j

B̂2(i
th and jth particles), (21)

and in the second-quantized formalism according to

B̂
(2)
net = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂2(|γ〉 ⊗ |δ〉) â†αâ
†
β âδâγ . (22)

Note: in this formula, it is OK to use the un-symmetrized 2-particle states 〈α| ⊗ 〈β|
and |γ〉 ⊗ |δ〉, and hence the un-symmetrized matrix elements of the B̂2. At the level

of the second-quantized operator B̂
(2)
net, the Bose symmetry is automatically provided by

â†αâ
†
β = â†β â

†
γ and âδâγ = âγ âδ, even for un-symmetrized matrix elements of the B̂2.

(f) Similar to part (d), show the operators (21) and (22) have the same matrix elements

between any two N -boson states, 〈N, ψ̃| Â(1)
net |N,ψ〉 = 〈N, ψ̃| Â(2)

net |N,ψ〉 for any 〈N, ψ̃|
and |N,ψ〉.

(g) Now let Â1 be a one-particle operator, let B̂2 and Ĉ2 be two-body operators, and let

Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net be the corresponding second-quantized operators according to

eqs. (20) and (22).

Show that if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
then Ĉ

(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.
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