1. First, a reading assignment: chapter 3 of Modern Quantum Mechanics by J. J. Sakurai, sections 1,2 , 3 , second half of section 5 (representations of the rotation operators), and section 10. The other sections $4,6,7,8$, and 9 are not relevant to the present class material. The main focus of this assignment are the relations between the rotations and the angular momenta $\hat{J}^{x, y, z}$.

PS: If you have read the Sakurai's book before but it has been a while, please read it again.
2. The rest of this homework is about the Lorentz group and its representations.

The continuous Lorentz group $S O^{+}(3,1)$ has 6 generators $\hat{J}^{\mu \nu}=-\hat{J}^{\nu \mu}$ satisfying

$$
\begin{equation*}
\left[\hat{J}^{\alpha \beta}, \hat{J}^{\mu \nu}\right]=i g^{\beta \mu} \hat{J}^{\alpha \nu}-i g^{\alpha \mu} \hat{J}^{\beta \nu}-i g^{\beta \nu} \hat{J}^{\alpha \mu}+i g^{\alpha \nu} \hat{J}^{\beta \mu} . \tag{1}
\end{equation*}
$$

In 3D terms, the generators comprise three angular momenta $\hat{J}^{i}=\frac{1}{2} \epsilon^{i j k} \hat{J}^{j k}-$ which generate the rotation of space - plus 3 generators $\hat{K}^{i}=\hat{J}^{0 i}=-\hat{J}^{i 0}$ of the Lorentz boosts.
(a) Show that in 3D terms, the commutation relations (1) become

$$
\begin{equation*}
\left[\hat{J}^{i}, \hat{J}^{j}\right]=i \epsilon^{i j k} \hat{J}^{k}, \quad\left[\hat{J}^{i}, \hat{K}^{j}\right]=i \epsilon^{i j k} \hat{K}^{k}, \quad\left[\hat{K}^{i}, \hat{K}^{j}\right]=-i \epsilon^{i j k} \hat{J}^{k} . \tag{2}
\end{equation*}
$$

Lorentz symmetry dictates commutation relations of $\hat{J}^{\mu \nu}$ with any operators comprising a Lorentz multiplet. In particular, for any Lorentz vector \hat{V}^{μ}

$$
\begin{equation*}
\left[\hat{V}^{\lambda}, \hat{J}^{\mu \nu}\right]=i g^{\lambda \mu} \hat{V}^{\nu}-i g^{\lambda \nu} \hat{V}^{\mu} \tag{3}
\end{equation*}
$$

(b) Spell out these commutation relations in 3D terms, then use them to show that the Lorentz boost generators $\hat{\mathbf{K}}$ do not commute with the Hamiltonian \hat{H}.
(c) Show that even in the non-relativistic limit, the Galilean boosts $t^{\prime}=t, \mathrm{x}^{\prime}=\mathbf{x}+\mathbf{v} t$ and their generators $\hat{\mathbf{K}}_{G}$ do not commute with the Hamiltonian.

In general, the time-independent symmetries commute with the Hamiltonian. But when the action of a symmetry is manifestly time dependent - like a Galilean boost $\mathbf{x}^{\prime}=$ $\mathbf{x}+\mathbf{v} t$ or a Lorentz boost - the symmetry operators do not commute with the time evolution and hence with the Hamiltonian.

Next, consider the little group $G(p)$ of Lorentz transforms preserving the momentum vector p^{μ} of some massive particle, $p_{\mu} p^{\mu}=m^{2}>0$. For simplicity, assume the particle moves in z direction with velocity β, thus $p^{\mu}=(E, 0,0, p)$ for $E=\gamma m$ and $p=\beta \gamma m$.
(d) Show that there 3 independent combination of \hat{J}^{i} and \hat{K}^{i} preserving this momentum, namely

$$
\begin{equation*}
\tilde{J}^{1}=\gamma \hat{J}^{1}-\beta \gamma \hat{K}^{2}, \quad \tilde{J}^{2}=\gamma \hat{J}^{2}+\beta \gamma \hat{K}^{1}, \quad \text { and } \quad \hat{J}^{3} . \tag{4}
\end{equation*}
$$

Also show that these three combinations have angular-momentum-like commutators with each other, $\left[\tilde{J}^{i}, \tilde{J}^{j}\right]=i \epsilon^{i j k} \tilde{J}^{k}$.

For a massless particle, $\gamma=\infty$ so eqs. (4) do not apply. Instead, the little group of momentum $p^{\mu}=(E, 0,0, E)$ is generated by the

$$
\begin{equation*}
\hat{I}^{1}=\hat{J}^{1}-\hat{K}^{2}, \quad \hat{I}^{2}=\hat{J}^{2}+\hat{K}^{1}, \quad \text { and } \quad \hat{J}^{3}, \tag{5}
\end{equation*}
$$

which obey the $\operatorname{ISO}(2)$ commutation relations

$$
\begin{equation*}
\left[\hat{J}^{3}, \hat{I}^{1}\right]=+i \hat{I}^{2}, \quad\left[\hat{J}^{3}, \hat{I}^{2}\right]=+i \hat{I}^{1}, \quad\left[\hat{I}^{1}, \hat{I}^{2}\right]=0 \tag{6}
\end{equation*}
$$

(e) Prove this.

As discussed in class, the finite unitary multiplets of the $\operatorname{ISO}(2)$ group generated by the (5) are singlets $|\lambda\rangle$, which are eigenstates of the helicity operator \hat{J}^{3} (for the momentum in z direction) and are annihilated by the $\hat{I}^{1,2}$ operators,

$$
\begin{equation*}
\hat{J}^{3}|\lambda\rangle=\lambda|\lambda\rangle, \quad \hat{I}^{1}|\lambda\rangle=0, \quad \hat{I}^{2}|\lambda\rangle=0 \tag{7}
\end{equation*}
$$

(f) Show that in 4 D terms the state $|p, \lambda\rangle$ of a massless particle satisfies

$$
\begin{equation*}
\epsilon_{\alpha \beta \gamma \delta} \hat{J}^{\beta \gamma} \hat{P}^{\delta}|p, \lambda\rangle=-2 \lambda \hat{P}_{\alpha}|p, \lambda\rangle . \tag{8}
\end{equation*}
$$

(g) Use this formula to show that continuous Lorentz transforms do not change helicities of
massless particles,

$$
\begin{equation*}
\left.\forall L \in \operatorname{SO}^{+}(3,1), \quad \widehat{\mathcal{D}}(L)|p, \lambda\rangle=\mid L p, \text { same } \lambda\right\rangle \times e^{i \text { phase }} \tag{9}
\end{equation*}
$$

3. While particle states belong to infinite but unitary multiplets of the Lorentz group, the quantum fields form finite but non-unitary multiplets. In this problem we shall classify all such multiplets of the $S O^{+}(3,1)$ group, or rather of its double cover $\operatorname{Spin}(3,1) \cong \mathrm{SL}(2, \mathbf{C})$.
(a) Let's re-organize the $\hat{\mathbf{J}}$ and $\hat{\mathbf{K}}$ generators of the continuous Lorentz group into two non-hermitian 3 -vectors

$$
\begin{equation*}
\hat{\mathbf{J}}_{+}=\frac{1}{2}(\hat{\mathbf{J}}+i \hat{\mathbf{K}}) \quad \text { and } \quad \hat{\mathbf{J}}_{-}=\frac{1}{2}(\hat{\mathbf{J}}-i \hat{\mathbf{K}})=\hat{\mathbf{J}}_{+}^{\dagger} . \tag{10}
\end{equation*}
$$

Show that the two 3 -vectors commute with each other, $\left[\hat{J}_{+}^{k}, \hat{J}_{-}^{\ell}\right]=0$, while the components of each 3 -vector satisfy angular momentum commutation relations, $\left[\hat{J}_{+}^{k}, \hat{J}_{+}^{\ell}\right]=$ $i \epsilon^{k \ell m} \hat{J}_{+}^{m}$ and $\left[\hat{J}_{-}^{k}, \hat{J}_{-}^{\ell}\right]=i \epsilon^{k \ell m} \hat{J}_{-}^{m}$.

By themselves, the $3 \hat{J}_{+}^{k}$ generate a symmetry group similar to rotations of a 3D space, but since the \hat{J}_{+}^{k} are non-hermitian, the finite irreducible multiplets of this symmetry are nonunitary analytic continuations (to complex "angles") of the ordinary angular momentum multiplets (j) of $\operatorname{spin} j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$ Likewise, the finite irreducible multiplets of the symmetry group generated by the \hat{J}_{-}^{k} are analytic continuations of the spin- j multiplets of angular momentum. Moreover, the two symmetry groups commute with each other, so the finite irreducible multiplets of the net Lorentz symmetry are tensor products $\left(j_{+}\right) \otimes\left(j_{-}\right)$ of the $\hat{\mathbf{J}}_{+}$and $\hat{\mathbf{J}}_{-}$multiplets. In other words, distinct finite irreducible multiplets of the Lorentz symmetry may be labeled by two integer or half-integer 'spins' j_{+}and j_{-}, while the states within such a multiplet are $\left|j_{+}, j_{-}, m_{+}, m_{-}\right\rangle$for $m_{+}=-j_{+}, \ldots,+j_{+}$and $m_{-}=$ $-j_{-}, \ldots,+j_{-}$.

The simplest non-trivial Lorentz multiplet 2 has $j_{+}=\frac{1}{2}$ while $j_{-}=0$. In this twocomponent multiplet $\hat{\mathbf{J}}_{+}=\frac{1}{2} \boldsymbol{\sigma}$ while $\hat{\mathbf{J}}_{-}=0$, or in terms of $\hat{\mathbf{J}}$ and $\hat{\mathbf{K}}, \hat{\mathbf{J}}=\frac{1}{2} \boldsymbol{\sigma}$ while $\hat{\mathbf{K}}=-\frac{i}{2} \boldsymbol{\sigma}$. Consequently, the finite Lorentz transforms in this multiplet are represented by
2×2 matrices of the form

$$
\begin{equation*}
M=\exp (-i \mathbf{a} \cdot \hat{\mathbf{J}}-i \mathbf{b} \cdot \hat{\mathbf{K}})=\exp \left(\frac{1}{2}(-i \mathbf{a}+\mathbf{b}) \cdot \boldsymbol{\sigma}\right) . \tag{11}
\end{equation*}
$$

for some real 3 -vectors \mathbf{a} and \mathbf{b}. The a vector here parametrizes a rotation of 3D space while the \mathbf{b} vector parametrizes a Lorentz boost; a general continuous Lorentz transform involves both. The matrices (11) always have unit determinant, $\operatorname{det}(M)=1$, but there are no other general restrictions: a generic M is complex, non-unitary, non-hermitian, etc., etc. The group of such 2×2 complex matrices is called $S L(2, \mathbf{C})$.

The Lorenz group has another in-equivalent two-component multiplet $\overline{\mathbf{2}}$ with $j_{+}=0$ and $j_{-}=\frac{1}{2}$. In this multiplet $\hat{\mathbf{J}}$ acts as $\frac{1}{2} \sigma$ but $\hat{\mathbf{K}}$ acts as $+\frac{i}{2} \sigma$, hence a finite Lorentz transform with the same parameters \mathbf{a} and \mathbf{b} as in eq. (11) is represented by a different 2×2 matrix

$$
\begin{equation*}
\bar{M}=\exp \left(\frac{1}{2}(-i \mathbf{a}-\mathbf{b}) \cdot \boldsymbol{\sigma}\right) \tag{12}
\end{equation*}
$$

Generally this matrix is in-equivalent to M but rather equivalent to the complex conjugate of M,

$$
\begin{equation*}
\bar{M}=\left(M^{\dagger}\right)^{-1}=\sigma_{2} M^{*} \sigma_{2} \tag{13}
\end{equation*}
$$

(b) Prove this relation for any \mathbf{a} and \mathbf{b}.

Hint: prove and use $\sigma_{2} \sigma^{*} \sigma_{2}=-\sigma$.
For pure rotations of 3 D space, M is unitary and $\bar{M}=M$. For pure Lorentz boosts, M is hermitian and $\bar{M}=M^{-1}$. We shall prove both statements later in this exercise.

Later in class we shall study in great detail the Dirac spinor fields that form a reducible $\mathbf{2}+\overline{\mathbf{2}}$ multiplet. There are also Weyl spinor fields that form irreducible $\mathbf{2}$ or $\overline{\mathbf{2}}$ multiplets. There will be future homeworks about those spinors, but for now let's consider the other Lorentz multiplets.

In the ordinary $\operatorname{Spin}(3)=S U(2)$ group, one can construct a multiplet of any spin j from a symmetric tensor product of $2 j$ doublets. This procedure gives us an object $\Phi_{\alpha_{1}, \ldots, \alpha_{2 j}}$
with $2 j$ spinor indices $\alpha_{1}, \ldots, \alpha_{2 j}=1,2$ that's totally symmetric under permutation of those indices and transforms under an $S U(2)$ symmetry U as

$$
\begin{equation*}
\Phi_{\alpha_{1}, \alpha_{2} \ldots, \alpha_{2 j}} \rightarrow U_{\alpha_{1}}^{\beta_{1}} U_{\alpha_{2}}^{\beta_{2}} \cdots U_{\alpha_{2 j}}^{\beta_{2 j}} \Phi_{\beta_{1}, \beta_{2} \ldots, \beta_{2 j}} . \tag{14}
\end{equation*}
$$

For integer j, such objects are equivalent to tensors of the $S O(3)$; for example, for $j=2$ $\Phi_{\alpha \beta} \equiv \Phi_{\beta \alpha}$ is equivalent to an $S O(3)$ vector $\vec{\Phi}$.

In the Lorentz group $\operatorname{Spin}(3,1)$ we have a similar situation - any multiplet can be constructed by tensoring together a bunch of two-component spinors of the $S L(2, \mathbf{C})$. But unlike the $S U(2)$, the $S L(2, \mathbf{C})$ has two different spinors $\mathbf{2} \not \not 二 \overline{\mathbf{2}}$ transforming under different rules. Notationally, we shall distinguish them by different index types: the un-dotted Greek indices belong to spinor that transform according to $M \in S L(2, \mathbf{C})$ while the dotted Greek indices belong to spinors that transform according to M^{*} (which is equivalent to \bar{M}),

$$
\begin{equation*}
\Phi_{\alpha} \rightarrow M_{\alpha}^{\beta} \Phi_{\beta} \quad \not \approx \quad \Phi_{\dot{\gamma}} \rightarrow M_{\dot{\gamma}}^{* \dot{\delta}} \Phi_{\dot{\delta}} \tag{15}
\end{equation*}
$$

Combining such spinors to make a multiplet with 'spins' j_{+}and j_{-}, we make an object $\Phi_{\alpha_{1}, \ldots, \alpha_{\left(2 j_{+}\right)} ; \dot{\gamma}_{1}, \ldots, \dot{\gamma}_{\left(2 j_{-}\right)}}$with $2 j_{+}$un-dotted indices and $2 j_{-}$dotted indices. Φ_{\ldots} is totally symmetric under permutations of the un-dotted indices with each other or dotted indices with each other, but there is no symmetry between indices of different types. Under an $S L(2, \mathbf{C})$ symmetry M, the un-dotted indices transform according to M while the dotted indices transform according to the M^{*}, thus

$$
\begin{equation*}
\Phi_{\alpha_{1}, \ldots, \alpha_{\left(2 j_{+}\right)} ; \dot{\gamma}_{1}, \ldots, \dot{\gamma}_{\left(2 j_{-}\right)}} \rightarrow M_{\alpha_{1}}^{\beta_{1}} \cdots M_{\alpha_{\left(2 j_{+}\right)}}^{\beta_{\left(2 j_{+}\right)}} \times M_{\dot{\gamma}_{1}}^{* M \dot{\delta}_{1}} \cdots M_{\dot{\gamma}_{\left(2 j_{-}\right)}}^{* M \dot{\delta}_{\left(2 j_{-}\right)}} \cdots \times \Phi_{\beta_{1}, \ldots, \beta_{\left(2 j_{+}\right)} ; \dot{\delta}_{1}, \ldots, \dot{\delta}_{\left(2 j_{-}\right)}} . \tag{16}
\end{equation*}
$$

Of particular importance among such multi-spinors is the bi-spinor $V_{\alpha \dot{\gamma}}$ with $j_{+}=j_{-}=\frac{1}{2}$ - it is equivalent to the Lorentz vector V^{μ}. The map between bi-spinors and Lorentz vectors involves four hermitian 2×2 matrices σ^{μ}, where σ^{0} is the unit matrix while σ^{1}, σ^{2} and σ^{3} are the Pauli matrices. In $S L(2, \mathbf{C})$ terms, each σ^{μ} matrix has one dotted and one un-dotted
index, thus $\sigma_{\alpha \dot{\gamma}}^{\mu}$. Using the σ^{μ}, we may re-cast any Lorentz vector V^{μ} as a matrix

$$
\begin{equation*}
V^{\mu} \rightarrow V_{\mu} \sigma^{\mu}=V^{0}-\mathbf{V} \cdot \boldsymbol{\sigma} \tag{17}
\end{equation*}
$$

an hence as a $\left(\frac{1}{2}, \frac{1}{2}\right)$ bi-spinor

$$
\begin{equation*}
V_{\alpha \dot{\gamma}}=\left(V_{\mu} \sigma^{\mu}\right)_{\alpha \dot{\gamma}}=V^{0} \delta_{\alpha \dot{\gamma}}-\mathrm{V} \cdot \sigma_{\alpha \dot{\gamma}} . \tag{18}
\end{equation*}
$$

Under an $S L(2, \mathbf{C})$ symmetry, the bi-spinor transforms as

$$
\begin{equation*}
V_{\alpha \dot{\gamma}} \rightarrow V_{\alpha \dot{\gamma}}^{\prime}=M_{\alpha}^{\beta} M_{\dot{\gamma}}^{* \dot{\delta}} V_{\beta \dot{\delta}} \tag{19}
\end{equation*}
$$

or in matrix form,

$$
\begin{equation*}
V_{\mu} \sigma^{\mu} \rightarrow V_{\mu}^{\prime} \sigma^{\mu}=M\left(V_{\mu} \sigma^{\mu}\right) M^{\dagger} \tag{20}
\end{equation*}
$$

Since the four matrices σ^{μ} form a complete basis of 2×2 matrices, eq. (20) defines a linear transform $V_{\mu}^{\prime}=L_{\mu}^{\nu} V_{\nu}$.
(c) Prove that for any $S L(2, \mathbf{C})$ matrix M, the transform $L_{\mu}^{\nu}(M)$ defined by eq. (20) is real (real V_{μ}^{\prime} for real V_{μ}), Lorentzian (preserves $V_{\mu}^{\prime} V^{\prime \mu}=V_{\mu} V^{\mu}$) and orthochronous. Hint: prove and use $\operatorname{det}\left(V_{\mu} \sigma^{\mu}\right)=V_{\mu} V^{\mu}$.

* For extra challenge, show that this transform is proper, $\operatorname{det}(L)=+1$.
(d) Verify that this $S L(2, \mathbf{C}) \rightarrow S O^{+}(3,1)$ map respects the group law, $L\left(M_{2} M_{1}\right)=$ $L\left(M_{2}\right) L\left(M_{1}\right)$.
(e) Verify explicitly that for a unitary $M=\exp \left(-\frac{i}{2} \theta \mathbf{n} \cdot \boldsymbol{\sigma}\right), L(M)$ is a rotation by angle θ around axis \mathbf{n}.
(f) Likewise, verify that for an hermitian $M=\exp \left(\frac{1}{2} r \mathbf{n} \cdot \boldsymbol{\sigma}\right), L(M)$ is a boost of rapidity r in the direction \mathbf{n}.
FYI, the rapidity is related to the β and γ parameters or a Lorentz boost as $\beta=\tanh (r)$, $\gamma=\cosh (r)$. For two successive boosts in the same direction, their rapidities add up, $r_{\text {net }}=a_{1}+r_{2}$.

In general, any $\left(j_{+}, j_{-}\right)$multiplet of the $S L(2, \mathbf{C})$ with integer net spin $j_{+}+j_{-}$is equivalent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the tensors.) For example, the $(1,1)$ multiplet is equivalent to a symmetric, traceless $2-$ index tensor $T^{\mu \nu}=T^{\nu \mu}, T_{\mu}^{\mu}=0$. For $j_{+} \neq j_{-}$the representation is complex, but one can make a real tensor by combining two multiplets with opposite j_{+}and j_{-}, for example the $(1,0)$ and the $(0,1)$ multiplets are together equivalent to the antisymmetric 2 -index tensor $F^{\mu \nu}=-F^{\nu \mu}$.
(g) Verify the above examples.

Hint: For any kind of angular momentum, $\left(j=\frac{1}{2}\right) \otimes\left(j=\frac{1}{2}\right)=(j=1) \oplus(j=0)$.

