
PHY–396 K. Problem set #7. Due October 20, 2015.

1. First, an exercise in Dirac matrices γµ. In this problem, you should not assume any explicit

matrices for the γµ but simply use the anticommutation relations

γµγν + γνγµ = 2gµν . (1)

When necessary, you may also assume that the Dirac matrices are 4× 4, and the γ0 matrix

is hermitian while the γ1, γ2, γ3 matrices are antihermitian, (γ0)† = +γ0 while (γi)† = −γi

for i = 1, 2, 3.

(a) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν , and γαγλγµγνγα = −2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

(b) The electron field in the EM background obeys the covariant Dirac equation(
iγµDµ − m

)
Ψ(x) = 0 where DµΨ = ∂µΨ− ieAµΨ. Show that this equation implies

(
DµD

µ + m2 + qFµνS
µν
)

Ψ(x) = 0. (2)

Besides the 4 Dirac matrices γµ, there is another useful matrix γ5
def
= iγ0γ1γ2γ3.

(c) Show that the γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices, γ5Sµν = +Sµνγ5.

(d) Show that the γ5 is hermitian and that (γ5)2 = 1.

(e) Show that γ5 = (i/24)εκλµνγ
κγλγµγν and that γ[κγλγµγν] = +24iεκλµν γ5.

(f) Show that γ[λγµγν] = +6iεκλµν γκγ
5.

(g) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices:

1, γµ, 1
2γ

[µγν] = −2iSµν , γ5γµ, and γ5.

∗ My conventions here are: ε0123 = −1, ε0123 = +1, γ[µγν] = γµγν − γνγµ,

γ[λγµγν] = γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ, etc.
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1?. For extra challenge, let’s generalize the Dirac matrices to spacetime dimensions d 6= 4. Such

matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Let Γ = inγ0γ1 · · · γd−1 be the generalization of the γ5 to d dimensions; the pre-factor in = ±i
or ±1 is chosen such that Γ = Γ† and Γ2 = +1.

(a) For even d, Γ anticommutes with all the γµ. Prove this, then use this fact to show that

there are 2d independent products of the γµ matrices, and consequently the matrices

should be 2d/2 × 2d/2.

(b) For odd d, Γ commutes with all the Γµ — prove this. Consequently, one can set Γ = +1

or Γ = −1; the two choices lead to in-equivalent sets of the γµ.

Classify the independent products of the γµ for odd d and show that their net number

is 2d−1; consequently, the matrices should be 2(d−1)/2 × 2(d−1)/2.

2. Now let’s go back to d = 3 + 1 and learn about the Weyl spinors and Weyl spinor fields.

Since all the spin matrices Sµν commute with the γ5, for all continuous Lorentz symmetries

Lµν their Dirac-spinor representations MD(L) = exp
(
− i

2ΘαβS
αβ
)

are block-diagonal in the

eigenbasis of the γ5. This makes the Dirac spinor Ψ a reducible multiplet of the continu-

ous Lorentz group SO+(3, 1) — it comprises two different irreducible 2-component spinor

multiplets called the left-handed Weyl spinor ψL and the right-handed Weyl spinor ψR.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

γµ =

(
0 σ̄µ

σµ 0

)
where

σµ
def
=
(
12×2,−σσ

)
,

σ̄µ
def
=
(
12×2,+σσ

)
,

(3)

and consequently

γ5 =

(
−1 0

0 +1

)
=⇒ MD(L) =

(
ML(L) 0

0 MR(L)

)
. (4)

(a) Check that the γ5 matrix indeed has this form and write down explicit matrices for the

Sµν in the Weyl convention.
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(b) Show that the 2× 2 matrices ML(L) and MR(L) in eq. (4) are precisely the M(L) and

the M(L) matrices from eqs. (11–12) of the previous homework. Specifically, for a pure

rotation by angle θ around axis n,

ML = MR = exp
(
− i

2 θn · σσ
)
, (5)

while for a pure Lorentz boost of rapidity r in the direction n,

ML(B) = exp(−1
2 r n · σσ

)
while MR(B) = exp(+1

2 r n · σσ
)
. (6)

In terms of the β and γ parameters of the boost,

ML =
√
γ ×

√
1 − β n · σσ , MR =

√
γ ×

√
1 + β n · σσ . (7)

In the Weyl convention for the Dirac matrices,

ΨDirac(x) =

(
ψL(x),

ψR(x)

)
where

ψ′L(x′) = ML(L)ψL(x),

ψ′R(x′) = MR(L)ψR(x).
(8)

In other words, the left-handed Weyl spinor field ψL(x) is in the 2 multiplet of the Spin(3, 1) =

SL(2,C) symmetry while the right-handed Weyl spinor field ψR(x) is in the conjugate 2̄

multiplet.

(c) In the previous homework (eq. (13)) we saw that MR = σ2 ×M∗L × σ2. Use this fact to

show that σ2 × ψ∗L(x) transforms under continuous Lorentz symmetries like the ψR(x),

while the σ2 × ψ∗R(x) transforms like the ψL(x).

Finally, consider the Dirac Lagrangian Ψ(iγµ∂µ − m)Ψ.

(d) Express this Lagrangian in terms of the Weyl spinor fields ψL(x) and ψR(x) (and their

conjugates ψ†L(x) and ψ†R(x)).

(e) Show that for m = 0 — and only for m = 0 — the two Weyl spinor fields become

independent from each other.

3

http://www.ph.utexas.edu/~vadim/Classes/2015f/hw06.pdf
http://www.ph.utexas.edu/~vadim/Classes/2015f/hw06.pdf


3. The third problem is about the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of the

Dirac equation. In all these waves p0 = +Ep = +
√

p2 +m2 while the 4–component spinors

u(p, s) and v(p, s) satisfy

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0 (9)

and are normalized to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ . (10)

Let’s write down explicit formulae for these spinors in the Weyl basis for the γµ matrices.

(a) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(11)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(b) For other momenta, u(p, s) = MD(boost) × u(p = 0, s) for the boost that turns (m,~0)

into pµ. Use eqs. (7) to show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
=

(√
pµσ̄µ ξs√
pµσµ ξs

)
. (12)

(c) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
pµσ̄µ ηs

−
√
pµσµ ηs

)
(13)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .

Physically, the ηs should have opposite spins from ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ−s.
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(d) Check that this is a solution, then show that it leads to v(p, s) = γ2u∗(p, s).

(e) Show that for ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 , the

Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl

spinor components ψL(x) or ψR(x) of the Dirac spinor Ψ(x), while the other component

becomes negligible. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(14)

Note that for the electrons the helicity and the chirality are both left or both right, but

for the positrons the chirality is opposite from the helicity.

Back in problem 2(b) we saw that for m = 0 the LH and the RH Weyl spinor fields decouple

from each other. Now this exercise show us which particle modes comprise each Weyl spinor:

The ψL(x) and its hermitian conjugate ψ†L(x) contain the left-handed fermions and the right-

handed antifermions, while the ψR(x) and the ψ†R(x) contain the right-handed fermions and

the left-handed antifermions.

4. Finally, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and

v(p, s) — although you may use the Weyl basis to verify them.

(a) Show that

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ ; (15)

note that the normalization here is different from eq. (10) for the u†u and v†v.

(b) There are only two independent SO(3) spinors, hence
∑

s ξsξ
†
s =

∑
s η
†
sηs = 12×2. Use

this fact to show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (16)
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