PHY-396 K. Problem set #8. Due October 27, 2015.

This homework is about discrete symmetries of Dirac fermions, the charge conjugation C

and the parity (reflection of space) P.

1. Let’s start with the charge conjugation C which exchanges particles with antiparticles,

for example the electrons e~ with the positrons e™,

Cle (p,s)) = leT(p,s)), Clet(p,s)) = |e(p.s)). (1)
Note that the operator C is unitary and squares to one (repeating the exchange brings

us back to the original particles), hence Ct=C1=C.

(a) In the fermionic Fock space, the C operator act on multi-particle states by turning
each particle into an antiparticle and vice verse according to eqs. (1). Show that this
action implies

C =1, Cb.,.C=a, Cai,C =b,,, Cb,C = ay,. (2
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(b) The quantum Dirac fields \T/(x) and U(z) are linear combinations of creation and

annihilation operators. Use eqgs. (2) and the plane-wave relations v(p, s) = v2u*(p, s)

and u(p, s) = y?v*(p, s) from the pomework sct#7 to show that

CU(z)C = +?U*(z) and éﬁ(x)é = ﬁ(m)72 (3)

where * stands for an hermitian conjugation of the component fields but without

transposing a column vector (of 4 Dirac components) into a row vector or vice verse,

thus
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(c) Show that the Dirac equation transforms covariantly under the charge conjuga-

tion (3). Hint: prove and use v#y% = —y2(y#)* for all v* in the Weyl basis.
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(d) Show that that the classical Dirac Lagrangian is invariant under the charge conjuga-
tion (up to a total spacetime derivative). Note that in the classical limit the Dirac
fields anticommute with each other, U; Vg = —WgW7. Also, similar to the hermitian
conjugation of quantum fields, the complex conjugation of fermionic fields reverses

their order: (F1Fy)* = FyFf = —F[F.

. Now consider the parity P, the im-proper Lorentz symmetry that reflects the space but

not the time, (x,t) = (—x, +t). This symmetry acts on Dirac spinor fields according to
V(—x,+t) = =9 U(+x, +1) (5)

where the overall + sign is intrinsic parity of the fermion species.

(a) Verify that the Dirac equation transforms covariantly under (5) and that the Dirac

Lagrangian is invariant (apart from £(x,t) — L(—x,1)).

In the Fock space, eq. (5) becomes
PU(x,t)P = +7°0(—x,1) (6)

for some unitary operator P that squares to one. Let’s find how this operator acts on the

particles and their states.

(b) First, look up the plane-wave solutions u(p, s) and v(p, s) in the homework set#7

and show that u(—p, s) = +7u(p, s) while v(—p, s) = —7%(p, s).

(¢) Now show that eq. (6) implies

Pa, P = xa_, .., Pal P = xal ., -
Ph, P = Fb ., PO P = ijTfp&s’

and hence
P|F(p,s)) = +|F(-p,+s)) and P|[F(p,s)) = F|F(-p,+s)). (8)

Note that the fermion F and the antifermion F have opposite intrinsic parities!
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3. Some electrically neutral particles carry other kinds of changes (forex, the baryon number)
that distinguish them from their antiparticles. But other particles — such as the photon
or the 7 meson — have no charges at all and act as their own antiparticles. The charge

conjugation symmetry turns such particles n into themselves,

Cln(p,s)) = %|n(p.s)), 9)

where the overall &£ sign is called the C-parity or charge-parity of the particle in question.
This C-parity — as well as the P-parity under space reflections — limit the allowed decay
channels of unstable particles via strong and EM interactions which respect both C and

P symmetries.

Consider a bound state of a charged Dirac fermion F' and the corresponding an-
tifermion, for example a ¢g meson or a positronium “atom” (a hydrogen-atom-like bound
state of e~ and e™). In the Fock space of fermions and antifermions, such bound state
with zero net momentum obtains as

d? ~
|B(pt0t = O)> = /(21;):)6; Z ¢(pred7 81, 32) X &T(+pred> 31) bT(_preda 32) |0> (10)

51,52

for some wave-function ¢ of the reduced momentum and the two spins.

Suppose this bound state has a definite orbital angular momentum L — which controls
the symmetry of the wave function 1 with respect to pred — —Pred — and definite net
spin S — which controls the symmetry of ¢ under s; <> s3. Turns out that the L and

the S of the bound state also determine its C-parity and P-parity.
(a) Show that C' = (—1)F+9,
(b) Show that P = (—1)L+1,

Now let’s apply these results to the positronium — a hydrogen-atom-like bound state of
a positron e™ and an electron e~. The ground state of positronium is hydrogen-like 1S

(n =1, L =0), with the net spin which could be either S =0 or S = 0.



(c) Explain why the S = 0 state annihilates into photons much faster than the S =1
state.
Hint#1: Annihilation rate of positronium into n photons happens in the n'* order
of QED perturbation theory, so the rate oc o™ (for a ~ 1/137).
Hint#2: Since the EM fields couple linearly to the electric charges and currents
(which are reversed by C), each photon has C' = —1.

4. A Dirac spinor field ¥(x) comprises two 2-component Weyl spinor fields,

N e
U(z) = (iR(x)) (11)

Spell out the actions of the C, P, and the combined CP symmetry on the Weyl spinors.
In particular, show that C and P interchange the two spinors, while the combined CP

symmetry acts on the ¢, and the ¢ independently from each other.

5. Finally, consider bilinear products of a Dirac field ¥(x) and its conjugate ¥(z). Generally,
such products have form WI'W where I' is one of 16 matrices discussed in the previous

homework; altogether, we have

S = VW, VH = Uyll,  TH = @%’y[“’yy]\lf, AF = IR0, and P = Ui,
(12)

(a) Show that all the bilinears (12) are Hermitian.

Hint: First, show that (UT0)" = TTW.
t
Note: despite the Fermi statistics, (@L‘Pg) = —i-\IfE\I/a.
(b) Show that under continuous Lorentz symmetries, the S and the P transform as

scalars, the V# and the A* as vectors, and the T as an antisymmetric tensor.

(c¢) Find the transformation rules of the bilinears (12) under parity and show that while
S is a true scalar and V' is a true (polar) vector, P is a pseudoscalar and A is an

axial vector.



Next, consider the charge-conjugation properties of the Dirac bilinears. To avoid the
operator-ordering problems, take the classical limit where ¥(x) and Uf(z) anticommute
with each other, ¥, ¥} = — 0l v,

(d) Show that C turns WI'W into WI'*W where ['¢ = 4042174042,

(e) Calculate I'® for all 16 independent matrices I and find out which Dirac bilinears are

C-even and which are C—odd.



