1. As a warm-up exercise, consider two species of scalar fields, Φ and ϕ, with a cubic coupling to each other,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{2}-\frac{M^{2}}{2} \Phi^{2}+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{m^{2}}{2} \phi^{2}-\frac{\mu}{2} \Phi \phi^{2} . \tag{1}
\end{equation*}
$$

(a) Write down the vertices and the propagators for the Feynman rules for this theory.
(b) Suppose $M>2 m$, so a single Φ particle may decay to two ϕ particles. Calculate the rate Γ of this decay (in the rest frame of the original Φ) to lowest order in perturbation theory.
2. Now consider N scalar fields ϕ_{i} of the same mass m and with $O(N)$ symmetric quartic couplings to each other,

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{i}\left(\partial_{\mu} \phi_{i}\right)^{2}-\frac{m^{2}}{2} \sum_{i} \phi_{i}^{2}-\frac{\lambda}{8}\left(\sim_{i} \phi_{i}^{2}\right)^{2} . \tag{2}
\end{equation*}
$$

(a) Write down the Feynman propagators and vertices for this theory.
(b) Calculate the tree-level scattering amplitudes \mathcal{M}, the partial cross-sections $d \sigma / d \Omega_{\mathrm{cm}}$ (in the center-of-mass frame), and the total cross-sections for the following 3 processes:
(i) $\phi_{1}+\phi_{2} \rightarrow \phi_{1}+\phi_{2}$.
(ii) $\phi_{1}+\phi_{1} \rightarrow \phi_{2}+\phi_{2}$.
(iii) $\phi_{1}+\phi_{1} \rightarrow \phi_{1}+\phi_{1}$.
3. Next, consider the so-called linear sigma model comprising N massless scalar or pseudoscalar fields π_{i} and a massive scalar field σ with both quartic and cubic couplings to the pions, specifically

$$
\begin{align*}
& \mathcal{L}= \frac{1}{2} \sum_{i}\left(\partial_{\mu} \pi_{i}\right)^{2} \\
&+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{\lambda}{8}\left(\sum_{i} \pi_{i}^{2}+\sigma^{2}+2 f \sigma\right)^{2} \tag{3}\\
&=\frac{1}{2} \sum_{i}\left(\partial_{\mu} \pi_{i}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{\lambda f^{2}}{2} \times \sigma^{2} \\
&-\frac{\lambda f}{2} \times\left(\sigma^{3}+\sigma \sum_{i} \pi_{i}^{2}\right)-\frac{\lambda}{8}\left(\sum_{i} \pi_{i}^{2}+\sigma^{2}\right)^{2}
\end{align*}
$$

Both the masslessness of the π_{i} fields and the specific relations between the quartic couplings, the cubic couplings, and the sigma's mass $M_{\sigma}^{2}=\lambda f^{2}$ in this model stem from the spontaneous breaking down of the $O(N+1)$ symmetry, which I shall explain in class later this semester. I shall also explain the relation of this model to the approximate chiral symmetry of QCD and hence to the real-life pi-mesons and their low-energy scattering amplitudes.

But in this homework, you should simply take the Lagrangian (3) as it is, and explore its implications for the scattering of π particles.
(a) Write down all the vertices and all the propagators for the Feynman rules for this theory.
(b) Draw all the tree diagrams and calculate the tree-level scattering amplitudes of two pions to two pions, $\mathcal{M}_{\text {tree }}\left(\pi^{j}+\pi^{k} \rightarrow \pi^{\ell}+\pi^{m}\right)$.
(c) Show that due to specific relations between the quartic and the cubic couplings in the Lagrangian (3), in the low-energy limit $E_{\text {tot }} \ll M_{\sigma}$, all the amplitudes $\mathcal{M}_{\text {tree }}\left(\pi^{j}+\right.$ $\left.\pi^{k} \rightarrow \pi^{\ell}+\pi^{m}\right)$ become small as $O\left(E_{\mathrm{tot}}^{2} / M_{\sigma}^{2}\right)$ or smaller.
Then use Mandelstam's variables s, t, u to show that when any of the incoming or outgoing pions' energy becomes small (while the other pions' energies are $O\left(M_{\sigma}\right)$), the scattering amplitudes become small as $O\left(E_{\text {small }} / M_{\sigma}\right)$ or smaller.
Later in class, we shall learn that this behavior stems from the Goldstone-Nambu theorem.
(d) Write down specific tree-level amplitudes, partial cross-sections (in the CM frame), and total cross-sections for the processes
(i) $\pi^{1}+\pi^{2} \rightarrow \pi^{1}+\pi^{2}$
(ii) $\pi^{1}+\pi^{1} \rightarrow \pi^{2}+\pi^{2}$
(iii) $\pi^{1}+\pi^{1} \rightarrow \pi^{1}+\pi^{1}$
in the low-energy limit $E_{\mathrm{cm}} \ll M_{\sigma}$.
4. For the last problem in this set, consider the muon pair production in QED. At the tree level,

In $11 / 5$ class we have focused on the un-polarized cross-section for this process; in this exercise we focus on the polarized amplitudes for definite helicities of all 4 particles involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac spinors $u\left(e^{-}\right), v\left(e^{+}\right), u\left(\mu^{-}\right), v\left(\mu^{+}\right)$all have definite chiralities,

$$
\begin{align*}
& u_{L} \approx \sqrt{2 E}\binom{\xi_{L}}{0}, \quad u_{R} \approx \sqrt{2 E}\binom{0}{\xi_{R}}, \\
& v_{L} \approx-\sqrt{2 E}\binom{0}{\eta_{L}}, \quad v_{R} \approx \sqrt{2 E}\binom{\eta_{R}}{0} . \tag{5}
\end{align*}
$$

$c f$. homework set\#7, eqs. (11-13).
(a) Show that in the approximation (5),

$$
\begin{equation*}
\bar{v}\left(e_{L}^{+}\right) \gamma_{\nu} u\left(e_{L}^{-}\right)=\bar{v}\left(e_{R}^{+}\right) \gamma_{\nu} u\left(e_{R}^{-}\right)=0, \tag{6}
\end{equation*}
$$

which means there is no muon pairs production unless the initial electron and positron have opposite helicities.
(b) Show that the μ^{-}and the μ^{+}must also have opposite helicities because

$$
\begin{equation*}
\bar{u}\left(\mu_{L}^{-}\right) \gamma^{\nu} v\left(\mu_{L}^{+}\right)=\bar{u}\left(\mu_{R}^{-}\right) \gamma^{\nu} v\left(\mu_{R}^{+}\right)=0 . \tag{7}
\end{equation*}
$$

(c) Let's work in the center-of-mass frame where the initial e^{-}and e^{+}collide along the z axis, $p_{1}^{\nu}=(E, 0,0,+E), p_{2}^{\nu}=(E, 0,0,-E)$. Calculate the 4 -vector $\bar{v}\left(e^{+}\right) \gamma^{\nu} u\left(e^{-}\right)$ in this frame and show that

$$
\begin{equation*}
\bar{v}\left(e_{L}^{+}\right) \gamma_{\nu} u\left(e_{R}^{-}\right)=2 E \times(0,+i,+1,0), \quad \bar{v}\left(e_{R}^{+}\right) \gamma_{\nu} u\left(e_{L}^{-}\right)=2 E \times(0,-i,+1,0) . \tag{8}
\end{equation*}
$$

(d) In the CM frame the muons fly away in opposite directions at some angle θ to the electron / positron directions. Without loss of generality we may assume the muons' momenta being in the $x z$ plane, thus

$$
\begin{equation*}
p_{1}^{\prime \nu}=(E,+E \sin \theta, 0,+E \cos \theta), \quad p_{1}^{\prime \nu}=(E,-E \sin \theta, 0,-E \cos \theta) \tag{9}
\end{equation*}
$$

Calculate the 4 -vector $\bar{u}\left(\mu^{-}\right) \gamma_{\nu} v\left(\mu^{+}\right)$for the muons and show that

$$
\begin{align*}
\bar{u}\left(\mu_{R}^{-}\right) \gamma^{\nu} v\left(\mu_{L}^{+}\right) & =2 E \times(0,-i \cos \theta,+1,+i \sin \theta) \tag{10}\\
\bar{u}\left(\mu_{L}^{-}\right) \gamma^{\nu} v\left(\mu_{R}^{+}\right) & =2 E \times(0,+i \cos \theta,+1,-i \sin \theta)
\end{align*}
$$

(e) Now calculate the amplitudes (4) for all possible combinations of particles' helicities,
calculate the partial cross-sections, and show that

$$
\begin{align*}
& \frac{d \sigma\left(e_{L}^{-}+e_{R}^{+} \rightarrow \mu_{L}^{-}+\mu_{R}^{+}\right)}{d \Omega_{\mathrm{c} . \mathrm{m} .}}=\frac{d \sigma\left(e_{R}^{-}+e_{L}^{+} \rightarrow \mu_{R}^{-}+\mu_{L}^{+}\right)}{d \Omega_{\mathrm{c} . \mathrm{m} .}}=\frac{\alpha^{2}}{4 s} \times(1+\cos \theta)^{2}, \\
& \frac{d \sigma\left(e_{L}^{-}+e_{R}^{+} \rightarrow \mu_{R}^{-}+\mu_{L}^{+}\right)}{d \Omega_{\mathrm{c.m.}}}=\frac{d \sigma\left(e_{R}^{-}+e_{L}^{+} \rightarrow \mu_{L}^{-}+\mu_{R}^{+}\right)}{d \Omega_{\mathrm{c} . \mathrm{m} .}}=\frac{\alpha^{2}}{4 s} \times(1-\cos \theta)^{2}, \\
& \frac{d \sigma\left(e_{L}^{-}+e_{L}^{+} \rightarrow \mu_{\text {any }}^{-}+\mu_{\text {any }}^{+}\right)}{d \Omega_{\text {c.m. }}}=\frac{d \sigma\left(e_{R}^{-}+e_{R}^{+} \rightarrow \mu_{\text {any }}^{-}+\mu_{\text {any }}^{+}\right)}{d \Omega_{\text {c.m. }}}=0, \\
& \frac{d \sigma\left(e_{\text {any }}^{-}+e_{\text {any }}^{+} \rightarrow \mu_{L}^{-}+\mu_{L}^{+}\right)}{d \Omega_{\text {c.m. }}}=\frac{d \sigma\left(e_{\text {any }}^{-}+e_{\text {any }}^{+} \rightarrow \mu_{R}^{-}+\mu_{R}^{+}\right)}{d \Omega_{\mathrm{c} . \mathrm{m} .}}=0 . \tag{11}
\end{align*}
$$

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section for the muon pair production.

