
PHY–396 K. Problem set #9. Due November 10, 2015.

1. As a warm-up exercise, consider two species of scalar fields, Φ and φ, with a cubic coupling

to each other,

L =
1

2
(∂µΦ)

2 − M2

2
Φ2 +

1

2
(∂µφ)

2 − m2

2
φ2 − µ

2
Φφ2. (1)

(a) Write down the vertices and the propagators for the Feynman rules for this theory.

(b) Suppose M > 2m, so a single Φ particle may decay to two φ particles. Calculate the

rate Γ of this decay (in the rest frame of the original Φ) to lowest order in perturbation

theory.

2. Now consider N scalar fields φi of the same mass m and with O(N) symmetric quartic

couplings to each other,

L =
1

2

∑

i

(∂µφi)
2 − m2

2

∑

i

φ2i − λ

8

(

∼i φ
2
i

)2
. (2)

(a) Write down the Feynman propagators and vertices for this theory.

(b) Calculate the tree-level scattering amplitudes M, the partial cross-sections dσ/dΩcm

(in the center-of-mass frame), and the total cross-sections for the following 3 pro-

cesses:

(i) φ1 + φ2 → φ1 + φ2.

(ii) φ1 + φ1 → φ2 + φ2.

(iii) φ1 + φ1 → φ1 + φ1.
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3. Next, consider the so-called linear sigma model comprising N massless scalar or pseu-

doscalar fields πi and a massive scalar field σ with both quartic and cubic couplings to

the pions, specifically

L =
1

2

∑

i
(∂µπi)

2 +
1

2
(∂µσ)

2 − λ

8

(

∑

i
π2i + σ2 + 2fσ

)2

=
1

2

∑

i

(∂µπi)
2 +

1

2
(∂µσ)

2 − λf2

2
× σ2

− λf

2
×
(

σ3 + σ
∑

i
π2i

)

− λ

8

(

∑

i
π2i + σ2

)2

(3)

Both the masslessness of the πi fields and the specific relations between the quartic cou-

plings, the cubic couplings, and the sigma’s mass M2
σ = λf2 in this model stem from the

spontaneous breaking down of the O(N +1) symmetry, which I shall explain in class later

this semester. I shall also explain the relation of this model to the approximate chiral

symmetry of QCD and hence to the real-life pi-mesons and their low-energy scattering

amplitudes.

But in this homework, you should simply take the Lagrangian (3) as it is, and explore its

implications for the scattering of π particles.

(a) Write down all the vertices and all the propagators for the Feynman rules for this

theory.

(b) Draw all the tree diagrams and calculate the tree-level scattering amplitudes of two

pions to two pions, Mtree(π
j + πk → πℓ + πm).

(c) Show that due to specific relations between the quartic and the cubic couplings in the

Lagrangian (3), in the low-energy limit Etot ≪ Mσ, all the amplitudes Mtree(π
j +

πk → πℓ + πm) become small as O(E2
tot/M

2
σ) or smaller.

Then use Mandelstam’s variables s, t, u to show that when any of the incoming or

outgoing pions’ energy becomes small (while the other pions’ energies are O(Mσ)),

the scattering amplitudes become small as O(Esmall/Mσ) or smaller.

Later in class, we shall learn that this behavior stems from the Goldstone–Nambu

theorem.
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(d) Write down specific tree-level amplitudes, partial cross-sections (in the CM frame),

and total cross-sections for the processes

(i) π1 + π2 → π1 + π2

(ii) π1 + π1 → π2 + π2

(iii) π1 + π1 → π1 + π1

in the low-energy limit Ecm ≪ Mσ.

4. For the last problem in this set, consider the muon pair production in QED. At the tree

level,

e− e+

µ− µ+

p1 p2

p′1 p′2

q
〈

µ−, µ+
∣

∣M
∣

∣e−, e+
〉

=
e2

s
× ū(µ−)γνv(µ+)× v̄(e+)γνu(e

−).

(4)

In 11/5 class we have focused on the un-polarized cross-section for this process; in this

exercise we focus on the polarized amplitudes for definite helicities of all 4 particles

involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac

spinors u(e−), v(e+), u(µ−), v(µ+) all have definite chiralities,

uL ≈
√
2E

(

ξL

0

)

, uR ≈
√
2E

(

0

ξR

)

,

vL ≈ −
√
2E

(

0

ηL

)

, vR ≈
√
2E

(

ηR

0

)

.

(5)

cf. homework set#7, eqs. (11–13).
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(a) Show that in the approximation (5),

v̄(e+L )γνu(e
−

L ) = v̄(e+R)γνu(e
−

R) = 0, (6)

which means there is no muon pairs production unless the initial electron and positron

have opposite helicities.

(b) Show that the µ− and the µ+ must also have opposite helicities because

ū(µ−L )γ
νv(µ+L) = ū(µ−R)γ

νv(µ+R) = 0. (7)

(c) Let’s work in the center-of-mass frame where the initial e− and e+ collide along the

z axis, pν1 = (E, 0, 0,+E), pν2 = (E, 0, 0,−E). Calculate the 4–vector v̄(e+)γνu(e−)

in this frame and show that

v̄(e+L )γνu(e
−

R) = 2E × (0,+i,+1, 0), v̄(e+R)γνu(e
−

L) = 2E × (0,−i,+1, 0). (8)

(d) In the CM frame the muons fly away in opposite directions at some angle θ to the

electron / positron directions. Without loss of generality we may assume the muons’

momenta being in the xz plane, thus

p′ν1 = (E,+E sin θ, 0,+E cos θ), p′ν1 = (E,−E sin θ, 0,−E cos θ) (9)

Calculate the 4–vector ū(µ−)γνv(µ
+) for the muons and show that

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,+1,+i sin θ),

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,+1,−i sin θ).

(10)

(e) Now calculate the amplitudes (4) for all possible combinations of particles’ helicities,
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calculate the partial cross-sections, and show that

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.
=

α2

4s
× (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.
=

α2

4s
× (1− cos θ)2,

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L)

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(11)

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section

for the muon pair production.
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