
PHY–396 K. Problem set #10. Due November 17, 2015.

1. Consider the elastic scattering e−e+ → e−e+ of ultra-relativistic electrons and positrons.

This process is called the Bhabha scattering after Homi Bhabha who has calculated the

cross-section back in 1935. His calculation was the leading order in perturbation theory;

in modern terms, it corresponds to the three-level of QED. Today, the Bhabha cross-

section is known to very high precision, so the observed rate of Bhabha scatterings at

electron-positron colliders is used to monitor the collider’s luminosity.

At the tree level of QED, there are two diagrams contributing to the Bhabha scattering,

namely
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(1)

(a) Evaluate the two diagrams and write down the amplitude M = M1+M2. Mind the

sign rules for the fermions.

Now comes the real work: calculating the un-polarized partial cross-section

(

dσ

dΩ

)

c.m.

=
|M|2
64π2s

(2)

where |M|2 stands for |M|2 summed over final particle spins and averaged over the spins

of the initial particles. Note the two diagrams (1) must be added together before squaring

the amplitude, because

|M1 +M2|2 = |M1|2 + |M2|2 + 2Re
(

M∗

1M2

)

6= |M1|2 + |M2|2. (3)

For simplicity, assume E ≫ me and neglect the electron’s mass throughout your calcula-

tion. You may find it convenient to express products of momenta in terms of Mandelstam’s

variables s, t, and u. In the me ≈ 0 approximation, p21 = p22 = p′21 = p′22 = m2
e ≈ 0 while

(p1p2) = (p′1p
′

2) ≈ 1
2
s, (p1p

′

1) = (p2p
′

2) ≈ −1
2
t, (p1p

′

2) = (p2p
′

1) ≈ −1
2
u. (4)
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(b) Let’s start with the second diagram’s amplitude M2. Sum / average the |M2|2 over

all spins and show that

1

4

∑

all spins

|M2|2 = 2e4 × t2 + u2

s2
. (5)

(c) Similarly, show that for the first diagram

1

4

∑

all spins

|M1|2 = 2e4 × s2 + u2

t2
. (6)

(d) Now consider the interference M∗

1 ×M2 between the two diagrams. Show that

1

4

∑

all spins

M∗

1 ×M2 = 2e4 × u2

st
. (7)

(e) Finally assemble all the terms together and show that for the Bhabha scattering

(

dσ

dΩ

)

c.m.

=
α2

2s
× s4 + t4 + u4

s2 × t2
=

α2

4s
×
(

3 + cos2 θ

1− cos θ

)2

. (8)

2. Next, consider the e+e− → µ+µ− pair production in the Standard Model rather than in

the pure QED. At the tree level of the Standard Model, there are 3 diagrams contributing

to the pair production: one diagram with a virtual photon in the s channel, one with a

virtual Z vector, and one with a virtual Higgs scalar,

photon
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(9)

Fortunately, the Higgs field has very weak couplings to electrons and muons, so to a good

approximation the third diagram may be neglected relative to the first two diagrams,

Mtree = Mγ + MZ + MH ≈ Mγ + MZ . (10)

Of the two remaining terms here, the virtual photon dominates at low energies E ≪ MZ ≈
91 GeV, but at higher energies both diagrams become equally important.

2



The diagram with the virtual photon was studied in class in great detail, and also in

problem 4 of the previous homework. In this problem, we focus on the virtual–Z diagram

and its interference with the virtual-photon diagram.

Later in class I shall explain the Z field and its couplings in great detail, but for now all

we need to know is that it’s a massive neutral vector field Zµ with propagator

µ νZ
=

i

q2 −M2
Z + iǫ

×
(

−gµν +
qµqν

M2
Z

)

, (11)

and that it couples to the charged leptons (e, µ, τ) according to

L ⊃ g′ Zµ ×
∑

ℓ=e,µ,τ

Ψℓγ
µ

(

sin2 θw − 1− γ5

4

)

Ψℓ . (12)

In this formula

g′ =
e

sin θw cos θw
(13)

and θw is the Weinberg’s weak mixing angle; experimentally sin2 θw = 0.232.

(a) Write down the Feynman rules for the Zee and Zµµ vertices and evaluate the virtual–

Z diagram for the muon pair production.

(b) Now let’s go the the center-of-mass frame and assume both the electrons and the

muons to be ultra-relativistic (Ec.m. = O(MZ) ≫ mµ, me). Evaluate the virtual–Z

amplitude MZ for all possible helicities of the e+e− and µ+µ−.

Use similar techniques to problem 4 of the previous homework and make good use of

the chirality of the ultrarelativistic spinors u(p, λ) and v(p, λ). Note that in the Weyl

basis

γ0γµ
(

sin2 θw − 1− γ5

4

)

=

(

gLσ̄
µ 0

0 gRσ
µ

)

where
gL = sin2 θw − 1

4
,

gR = sin2 θw .
(14)

(c) Combine the amplitudes MZ from part (b) with the virtual-photon amplitudes Mγ

from problem 4 of the previous homework, and use them to calculate the total cross
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section σ(e+e− → µ+µ−) and the forward-backward asymmetry

A =
σ(θ < π/2)− σ(θ > π/2)

σ(θ < π/2) + σ(θ > π/2)
(15)

as functions of the total energy Ec.m.. For simplicity, approximate sin2 θw ≈ 1
4
and

hence gR ≈ −gL ≈ 1
4
.

Note that in QED the tree-level pair production is symmetric with respect to θ → π−θ;

the asymmetry in the Standard Model arises from the interference between the virtual-

photon and virtual-Z diagrams.

3. Finally, consider the muon decay. Most of the time, a muon decays into an electron, an

electron-flavored antineutrino, and a muon-flavored neutrino, µ− → e−ν̄eνµ. At the tree

level of the Standard model, this decay proceeds through a single Feynman diagram

W− →

µ−

νµ

ν̄e

e−

(16)

Since all the momenta in this diagram are much smaller than MW , me may approximate

the W propagator as simply igκλ/M2
W . Consequently, the decay amplitude is

〈

e−, ν̄e, νµ
∣

∣M
∣

∣µ−
〉

≈ igκλ

M2
W

× ū(νµ)

(

−ig2γκ
1− γ5

2

)

u(µ−)×

× ū(e−)

(

−ig2γλ
1− γ5

2

)

v(ν̄e)

=
GF√
2

[

ū(νµ)γ
λ(1− γ5)u(µ−)

]

×
[

ū(e−)γλ(1− γ5)v(ν̄e)
]

(17)

where GF ≈ 1.17 · 10−5GeV−2 is the Fermi constant. In this exercise, you will use this

amplitude to calculate the muon’s net decay rate Γ and the energy spectrum dΓ/dEe of

the final state electrons.
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(a) Sum the absolute square of the amplitude (17) over the final particle spins and average

over the initial muon’s spin. Show that altogether,

1
2

∑

all

spins

∣

∣

〈

e−, ν̄e, νµ
∣

∣M
∣

∣µ−
〉
∣

∣

2
= 64G2

F (pµ · pν̄) (pe · pν). (18)

The rest of this problem is the phase space calculation. The following lemma is very useful

for three-body decays like µ− → e− + νµ + ν̄e:

For a decay of initial particle of mass M0 into three final particles of respective masses

m1, m2, and m3, the partial decay rate in the rest frame of the original particle is

dΓ =
1

2M0

× |M|2 × d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0), (19)

where d3Ω comprises three angular variables parametrizing the directions of the three

final-state particles relative to some external frame, but not affecting the angles between

the three momenta. For example, one may use two angles to describe the orientation of

the decay plane (the three momenta are coplanar, p1 + p2 + p3 = 0) and one more angle

to fix the direction of e.g., p1 in that plane. Altogether,
∫

d3Ω = 4π × 2π = 8π2.

(b) Prove this lemma.

(c) Show that when m1 = m2 = m3 = 0, the kinematically allowed range of the final

particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1
2
M0 while E1 + E2 + E3 = M0, (20)

but for the non-zero masses m1,2,3 this range is much more complicated.

Note that the electron and the neutrinos are much lighter then the muon, so in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which gives us the limits (20) for the final particles’ energies.

Experimentally, the neutrinos and the antineutrinos are hard to detect. But it is easy to

measure the muon’s net decay rate Γ = 1/τµ and the energy distribution dΓ/dEe of the

electrons produced by decaying muons.

(d) Integrate the muon’s partial decay rate over the final particle energies and derive first

the dΓ/dEe and then the total decay rate.
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