PHY-396 K. Problem set #12, the last set this semester! Due December 3, 2015.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e.,
a set of N fields (complex scalars or Dirac fermions) which transform as a complex N—

vector,

V() = U@)¥(z) ie W) =Y U@)¥(x), i,j=12....N (1)
J

where U(z) is an z—dependent unitary N x N matrix, det U(z) = 1. Now consider N? — 1

real fields ®%(x) forming an adjoint multiplet: In matrix form
)\CL
o = o — 2
) = T 2)

is a traceless hermitian N x N matrix which transforms under the local SU(N) symmetry

as

'(z) = Ulx)®(x)U'(2). (3)

Note that this transformation law preserves the ®f = ® and tr(®) = 0 conditions.

The covariant derivatives D, act on an adjoint multiplet of fields as
Dub(z) = 0,8(x) + ilAu(x), 2(x)] = 0,0(x) + idu()B(x) — iD(x)Au(). (4)

or in components

D,®%(z) = 9,Pq(z) — f°Ab(2)P¢(). (5)

(a) Verify that these derivatives are indeed covariant — the D,®(x) transforms under

the local SU(N) symmetry exactly like the ®(z) itself.

(b) Verify the Leibniz rule for covariant derivatives of matrix products. Let ®(z) and

Z(x) be two adjoint multiplets while ¥(z) is a fundamental multiplet and ¥f(z) is



its hermitian conjugate (row vector of V7). Show that
D, (®Z) = (D,Q)E + ®(D,2),
Du(®V) = (Du®)¥ + (D,W), (6)
D,(V'E) = (D, ¥z + wi(D,=).

(c¢) Show that for an adjoint multiplet ®(z),
[Dpy Dy @(x) = il Fpu(2), ®(2)] = ig[Fu (), ®(z)] (7)

or in components [D,,, D, |®%(z) = —gf“chﬁy(x)q)C(x).

e In my notations A, and F},, are canonically normalized fields while A, = gA, and

Fuv = gF,, are normalized by the symmetry action.

In class, I have argued (using covariant derivatives) that the tension fields 7, (z) them-
selves transform according to eq. (3). In other words, the 7}, (z) form an adjoint multiplet

of the SU(N) symmetry group.

(d) Verify the ), (z) = U(z)Fpu (2)U T(z) transformation law directly from the definition

Fuw def 0y Ay —0, A+ A, A,] and the non-abelian gauge transform of the A, fields.

(e) Verify the Bianchi identity for the non-abelian tension fields F,, (z):

Note the covariant derivatives in this equation.

Finally, consider the SU(N) Yang—Mills theory — the non-abelian gauge theory that does
not have any fields except A%(x) and F*(x); its Lagrangian is

1
a
(f) Show that the Euler-Lagrange field equations for the Yang—Mills theory can be writ-
ten in covariant form as D, F* = 0.

Hint: first show that for an infinitesimal variation 6.A,(z) of the non-abelian gauge

fields, the tension fields vary according to 6., (z) = D,0A,(z) — Dy,0Au(z).



2. Continuing the previous problem, consider an SU(N) gauge theory in which N2 —1 vector

fields Ajj(x) interact with some “matter” fields ¢ (),

1
E = —2—g2 tr(}"w,f’“‘”) + Emat(¢,Du¢)' (10)
For the moment, let me keep the matter fields completely generic — they can be scalars,
or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)
symmetry as long as such multiplet is complete and non-trivial. All we need to know

right now is that there are well-defined covariant derivatives D, ¢ that depend on the

gauge fields A%, which give rise to the currents

o a'Cmat

Ja = .
A

(11)

Collectively, these N2 — 1 currents should form an adjoint multiplet J# = 3 (3A%) J
of the SU(N) symmetry.

(a) Show that in this theory the equation of motion for the A fields are D, F*" = J%
and that consistency of these equations requires the currents to be covariantly con-

served,

DyJt = 00" + i[A,, J"] = 0, (12)

or in components, 9,,J% — fabCAZJC“ =0.

Note: a covariantly conserved current does not lead to a conserved charge,
(d/dt) [d>x TV (x,t) # 0!

Now consider a simple example of matter fields — a fundamental multiplet ¥(z) of NV

Dirac fermions ¥;(z), with a Lagrangian

_ 1
Liat = ¥(in"Dy — m)¥, Lnet = Lmat — 2 tr (Fu F*). (13)

(b) Derive the SU(N) currents J for these fermions and verify that under SU(N)

symmetries the currents transform covariantly into each other as members of the



adjoint multiplet. That is, the N x N matrix JV = Za(%)\“)J " transforms according
to eq. (3).

Hint: for any complex N-vectors & and 7;,

S ixe) x ()] = 2ue — = (ate) <o (14)

a

(c) Finally, verify the covariant conservation D, J** = 0 of these currents when the

fermionic fields ¥,(z) and @Z(x) obey their equations of motion.

3. This problem is about general multiplets of general gauge groups. Consider a Lie group
G with generators T° obeying commutation relations [T “,Tb] =1 fabCT €. Under an

infinitesimal local symmetry
G(r) = 1 + iA%a)T* + ---, infinitesimal A%(x), (15)
the gauge fields Af () transform as
Al(z) = Ab(x) — DuA(x) = A%(z) — 0uA*(x) — fPA(2)AS(x).  (16)

Other fields of the gauge theory (scalar, spinor, or whatever) must form complete mul-
tiplets of the gauge group G. In any such multiplet (m), the generators T are repre-
sented by size(m) X size(m) matrices (T(’lm))aﬁ satisfying similar commutation relations,
[T(“m), T(bm)] =1 fabCT(Cm). The fields W, (x) belonging to such multiplet transform under

infinitesimal gauge transforms (15) as
Ta(2) > Valz) + A (@)(TE) Ws(a) (17)
and the covariant derivatives D,, act on these fields as

DyVa(z) = 8,Va(x) + iAL()(Th,)d Va(z). (18)

e Verify covariance of these derivatives under infinitesimal gauge transforms (15).

* For extra challenge, only for the students familiar with the basic theory of Lie groups:
Prove covariance of the derivatives (18) under finite gauge transforms.

Hint: use Lemma on the next page.



Lemma: For any finite symmetry G € G, the matrix (R(m)(g))f representing this

symmetry in the multiplet (m) satisfies

B (rra — J b 9 ba
(Riny( @) o (Th) 5 (Buy (@), = (Tin)) o Roii(9) (19)
where Rg‘éj(g ) represents G in the adjoint multiplet. Note that the same Rggj(g) appears

on right hand sides of egs. (19) for all multiplets (m) of G — and that’s what allows us
to use the same gauge fields A,(z) to make covariant derivatives (18) for all multiplets

of the gauge group G.

4. In the previous homeworH (set#11, problem#4), we had continuous global symmetry
G = SU(N)r x SU(N)g x U(1) spontaneously broken down to H = SU(N)y. Now let’s
gauge the entire SU(N ) x SU(N)gxU(1) symmetry and work out the Higgs mechanism.

The present theory comprises N? complex scalar fields (IDZ-j () organized into an N x N
matrix, and 2N? — 1 real vector fields B,,(z), L% (z), and Rj(), the latter organized into
traceless hermitian matrices L, (z) = >, Lj(z) x %)\“ and Ry (r) = ), Rj(z) x A,
where a = 1,...,(N?—1) and \* are the Gell-Mann matrices of SU(N). The Lagrangian

is
L = -1B,B" — ltr(L,I") — Ltr (R R™) + tr (DWI)T DM<I>> — (@), (20)

where
By = 0,B, — 9,B,,
Ly = 9uLy — 9,L, + ig[Ly, L),
Ry = O0.R, — 9,R, + ig[Ru, Ry, (21)
D,® = 0,9 + igB,® + igL,® — ig®R,,
D" = (D,®) = 9,8 — igB,® + igR,®! — igdTL,,.

For simplicity, I assume equal gauge couplings gr, = gr = ¢ for the two SU(N) factors of
the gauge group, but the abelian coupling ¢’ is different.


http://www.ph.utexas.edu/~vadim/Classes/2015f/hw11.pdf

The scalar potential V' is precisely as in the previous homeworH,

s

Vo= %tr(qﬂ@qﬂ@) + 5 0?(270) + m? tr(eTR), >0, m? <0, (22)

hence similar VEVs of the scalar fields: up to a gauge symmetry,

—m2

(d) = C x1yxny where C = oI NG

(23)

which breaks the G = SU(N)r, x SU(N)g x U(1) down to SU(N)y.

(a)

The Higgs mechanism makes N2 out of 2N? — 1 vector fields massive. Calculate their
masses by plugging (®) for the ®(x) into the tr(D,®' D*®) term of the Lagrangian.
In particular, show that the abelian gauge field B, and the X = \%(LZ - R})

combinations of the SU(N) gauge fields become massive, while the Vi = % (LG+RE)

combinations remain massless.

Find the effective Lagrangian for the massless vector fields Vﬁ(m) by freezing all
the other fields, i.e. setting ®(z) = (®), Bu(z) = 0 and Xjj(z) = 0. Show that
this Lagrangian describes a Yang—Mills theory with gauge group SU(N)y and gauge
coupling gy = g/v/2.

For extra challenge, allow for un-equal gauge coulings g7, # gr. Find which combi-
nations of the Lj(r) and R} (z) fields remain massless in this case, then derive the
effective Lagrangian for these massless fields by freezing everything else. As in part
(b), you should get an SU(N) Yang—Mills theory, but this time the gauge coupling
is

JLIRr

.
91, + 9r

(24)
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