Phase Space Factors

For quantum transitions to un-bound states - for example, an atom emitting a photon, or a radioactive decay, or scattering, which is a kind of unbound \rightarrow unbound transition, the transition rate is given by the Fermi's golden rule:

$$
\begin{equation*}
\left.\left.\Gamma \stackrel{\text { def }}{=} \frac{d \text { probability }}{d \text { time }}=\frac{2 \pi \rho}{\hbar} \times \mid\langle\text { final }| \hat{T} \right\rvert\, \text { initial }\right\rangle\left.\right|^{2} \tag{1}
\end{equation*}
$$

where $\hat{T}=\hat{H}_{\text {perturbation }}+$ higher order corrections, and ρ is the density of final states,

$$
\begin{equation*}
\rho=\frac{d N_{\text {final states }}}{d E_{\text {final }}} . \tag{2}
\end{equation*}
$$

For example, for an atom emitting a photon, and using the large-box normalization for the photon's states, we have

$$
\begin{equation*}
d N_{\text {final }}=2_{\text {polarizations }} \times\left(\frac{L}{2 \pi}\right)^{3} d^{3} \mathbf{k}_{\gamma}=\frac{2 L^{3}}{(2 \pi)^{3}} \times k_{\gamma}^{2} d k_{\gamma} d^{2} \Omega_{\gamma} \tag{3}
\end{equation*}
$$

while $d E_{\text {final }}=d E_{\gamma}=\hbar c d k_{\gamma}$, hence

$$
\begin{equation*}
\rho=L^{3} \times \frac{2 k_{\gamma}^{2}}{(2 \pi)^{3} \hbar c} \times d^{2} \Omega_{\gamma}, \tag{4}
\end{equation*}
$$

where the L^{3} factor cancels against the $L^{-3 / 2}$ factor in the matrix element $\left\langle\right.$ atom $\left.^{\prime}+\gamma\right| \hat{T} \mid$ atom \rangle due to the photon's wave function. As to the remaining $d^{2} \Omega_{\gamma}$ factor, we should integrate over it to get the total decay rate, or divide by it to get the partial emission rate $d \Gamma / d \Omega$ for photons going into a particular direction.

In relativistic normalization of quantum states and matrix elements, there are no $L^{-3 / 2}$ factors but instead there are $\sqrt{2 E}$ factors for each final-state or initial state particle, and they must be compensated by dividing the density of states ρ by the $\prod_{i}\left(2 E_{i}\right)$. Also, we must allow for motion of all the final-state particles (i.e., both the photon and the recoiled atom) but impose the momentum conservation as a constraint. Thus, for a decay of 1 initial
particle into n final particles,

$$
\begin{equation*}
\left.\Gamma=\frac{1}{2 E_{\text {in }}} \int \frac{d^{3} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \cdots \int \frac{d^{3} \mathbf{p}_{n}^{\prime}}{(2 \pi)^{3} 2 E_{n}^{\prime}}\left|\left\langle p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right| \mathcal{M}\right| p_{\text {in }}\right\rangle\left.\right|^{2} \times\left(2 \pi^{4}\right) \delta^{(4)}\left(p_{1}^{\prime}+\cdots+p_{n}^{\prime}-p_{\text {in }}\right), \tag{5}
\end{equation*}
$$

where the δ function takes care of both momentum conservation and of the denominator $d E_{f}$ in the density-of-states factor (2). Likewise, the transition rate for a generic $2 \rightarrow n$ scattering process is given by

$$
\begin{align*}
\Gamma=\frac{1}{2 E_{1} \times 2 E_{2}} \int \frac{d^{3} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \cdots \int \frac{d^{3} \mathbf{p}_{n}^{\prime}}{(2 \pi)^{3} 2 E_{n}^{\prime}} & \left.\left|\left\langle p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right| \mathcal{M}\right| p_{1}, p_{2}\right\rangle\left.\right|^{2} \times \tag{6}\\
& \times\left(2 \pi^{4}\right) \delta^{(4)}\left(p_{1}^{\prime}+\cdots+p_{n}^{\prime}-p_{1}-p_{2}\right) .
\end{align*}
$$

In terms of the scattering cross-section σ, the rate $\Gamma=\sigma \times$ flux of initial particles. In the large-box normalization, the flux is $L^{-3}\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|$, so in the continuum normalization it's simply the relative speed $\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|$. Consequently, the total scattering cross-section is given by

$$
\begin{align*}
\sigma_{\mathrm{tot}}=\frac{1}{4 E_{1} E_{2}\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|} \int \frac{d^{3} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \cdots \int \frac{d^{3} \mathbf{p}_{n}^{\prime}}{(2 \pi)^{3} 2 E_{n}^{\prime}} & \left.\left|\left\langle p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right| \mathcal{M}\right| p_{1}, p_{2}\right\rangle\left.\right|^{2} \times \\
& \times\left(2 \pi^{4}\right) \delta^{(4)}\left(p_{1}^{\prime}+\cdots+p_{n}^{\prime}-p_{1}-p_{2}\right) \tag{7}
\end{align*}
$$

In particle physics, all the factors in eqs (5) or (7) besides the matrix elements - as well as the integrals over such factors - are collectively called the phase space factors.

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements〈final| \mathcal{M} |initial〉 are Lorentz invariant, and so are all the integrals over the final-particles' momenta and the δ-functions. The only non-invariant factor in the decay-rate formula (5) is the pre-integral $1 / E_{\text {init }}$, hence the decay rate of a moving particle is

$$
\begin{equation*}
\Gamma(\text { moving })=\Gamma(\text { rest frame }) \times \frac{M}{E} \tag{8}
\end{equation*}
$$

where M / E is precisely the time dilation factor in the moving frame.
As to the scattering cross-section, it should be invariant under Lorentz boosts along the initial axis of scattering, thus the same cross-section in any frame where $\mathbf{p}_{1} \| \mathbf{p}_{2}$. This
includes the lab frame where one of the two particles is initially at rest, the center-of-mass frame where $\mathbf{p}_{1}+\mathbf{p}_{2}=0$, and any other frame where the two particles collide head-on. And indeed, the pre-integral factor is

$$
\begin{equation*}
\frac{1}{4 E_{1} E_{2}\left|\mathbf{v}_{1}-\mathbf{v}_{2}\right|}=\frac{1}{4\left|E_{1} \mathbf{p}_{2}-E_{2} \mathbf{p}_{1}\right|} \tag{9}
\end{equation*}
$$

in eq. (7) for the cross-section is invariant under Lorentz boosts along the scattering axis.
Let's simplify eq. (7) for a 2 particle $\rightarrow 2$ particle scattering process in the center-of-mass frame where $\mathbf{p}_{1}+\mathbf{p}_{2}=0$. In this frame, the pre-exponential factor (9) becomes

$$
\begin{equation*}
\frac{1}{4|\mathbf{p}| \times\left(E_{1}+E_{2}\right)} \tag{10}
\end{equation*}
$$

while the remaining phase space factors amount to

$$
\begin{align*}
\mathcal{P}_{\text {int }} & =\int \frac{d^{3} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \int \frac{d^{3} \mathbf{p}_{2}^{\prime}}{(2 \pi)^{3} 2 E_{2}^{\prime}}(2 \pi)^{4} \delta^{(3)}\left(\mathbf{p}_{1}^{\prime}+\mathbf{p}_{2}^{\prime}\right) \delta\left(E_{1}^{\prime}+E_{2}^{\prime}-E_{\mathrm{net}}\right) \\
& =\int \frac{d^{3} \mathbf{p}_{1}^{\prime}}{(2 \pi)^{3} \times 2 E_{1}^{\prime} \times 2 E_{2}^{\prime}}(2 \pi) \delta\left(E_{1}^{\prime}\left(\mathbf{p}_{1}^{\prime}\right)+E_{2}^{\prime}\left(-\mathbf{p}_{1}^{\prime}\right)-E_{\mathrm{net}}\right) \\
& =\int d^{2} \Omega_{\mathbf{p}^{\prime}} \times \int_{0}^{\infty} d p^{\prime} \frac{p^{2}}{16 \pi^{2} E_{1}^{\prime} E_{2}^{\prime}} \times \delta\left(E_{1}^{\prime}+E_{2}^{\prime}-E_{\mathrm{tot}}\right) \tag{11}\\
& =\int d^{2} \Omega_{\mathbf{p}^{\prime}}\left[\frac{p^{\prime 2}}{16 \pi^{2} E_{1}^{\prime} E_{2}^{\prime}} / \frac{d\left(E_{1}^{\prime}+E_{2}^{\prime}\right)}{d p^{\prime}}\right]_{E_{1}^{\prime}+E_{2}^{\prime}=E_{\text {tot }}}^{\text {when }}
\end{align*}
$$

On the last 3 lines here $E_{1}^{\prime}=E_{1}^{\prime}\left(\mathbf{p}_{1}^{\prime}\right)=\sqrt{p^{\prime 2}+m_{1}^{\prime 2}}$ while $E_{2}^{\prime}=E_{2}^{\prime}\left(\mathbf{p}_{2}^{\prime}=-\mathbf{p}_{1}^{\prime}\right)=\sqrt{p^{\prime 2}+m_{2}^{\prime 2}}$. Consequently,

$$
\begin{equation*}
\frac{d E_{1}^{\prime}}{d p^{\prime}}=\frac{p^{\prime}}{E_{1}^{\prime}}, \quad \frac{d E_{2}^{\prime}}{d p^{\prime}}=\frac{p^{\prime}}{E_{2}^{\prime}}, \tag{12}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{d\left(E_{1}^{\prime}+E_{2}^{\prime}\right)}{d p^{\prime}}=\frac{p^{\prime}}{E_{1}^{\prime}}+\frac{p^{\prime}}{E_{2}^{\prime}}=\frac{p^{\prime}}{E_{1}^{\prime} E_{2}^{\prime}} \times\left(E_{2}^{\prime}+E_{1}^{\prime}=E_{\mathrm{tot}}\right) \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathcal{P}_{\mathrm{int}}=\frac{1}{16 \pi^{2}} \times \frac{p^{\prime}}{E_{\mathrm{tot}}} \times \int d^{2} \Omega_{\mathbf{p}^{\prime}} \tag{14}
\end{equation*}
$$

Including the pre-integral factor (10), we arrive at the net phase space factor

$$
\begin{equation*}
\mathcal{P}=\frac{p^{\prime}}{p} \times \frac{1}{64 \pi^{2} E_{\mathrm{tot}}^{2}} \times \int d^{2} \Omega_{\mathbf{p}^{\prime}} \tag{15}
\end{equation*}
$$

The matrix element \mathcal{M} for the scattering should be put inside the direction-angle integral in this phase-space formula. Thus, the total scattering cross-section is

$$
\begin{equation*}
\left.\sigma_{\mathrm{tot}}\left(1+2 \rightarrow 1^{\prime}+2^{\prime}\right)=\frac{p^{\prime}}{p} \times \frac{1}{64 \pi^{2} E_{\mathrm{cm}}^{2}} \times \int d^{2} \Omega\left|\left\langle p_{1}^{\prime}+p_{2}^{\prime}\right| \mathcal{M}\right| p_{1}+p_{2}\right\rangle\left.\right|^{2}, \tag{16}
\end{equation*}
$$

while the partial cross-section for scattering in a particular direction is

$$
\begin{equation*}
\left.\frac{d \sigma\left(1+2 \rightarrow 1^{\prime}+2^{\prime}\right)}{d \Omega_{\mathrm{cm}}}=\frac{p^{\prime}}{p} \times \frac{1}{64 \pi^{2} E_{\mathrm{cm}}^{2}} \times\left|\left\langle p_{1}^{\prime}+p_{2}^{\prime}\right| \mathcal{M}\right| p_{1}+p_{2}\right\rangle\left.\right|^{2} \tag{17}
\end{equation*}
$$

Note: the total cross-section is the same in frames where the initial momenta are collinear, but in the partial cross-section, $d \Omega$ depends on the frame of reference, so eq. (17) applies only in the center-of mass frame. Also, the E_{cm} factor in denominators of both formulae stands for the net energy in the center-of-mass frame. In frame-independent terms,

$$
\begin{equation*}
E_{\mathrm{cm}}^{2}=\left(p_{1}+p_{2}\right)^{2}=\left(p_{1}^{\prime}+p_{2}^{\prime}\right)^{2} \tag{18}
\end{equation*}
$$

Finally, let me write down the phase-space factor for a 2-body decay (1 particle \rightarrow 2 particles) in the rest frame of the initial particle. The under-the-integral factors for such a decay are the same as in eq. (14) for a $2 \rightarrow 2$ scattering, but the pre-integral factor is $1 / 2 M_{\text {init }}$ instead of the (10), thus

$$
\begin{equation*}
\mathcal{P}=\frac{p^{\prime}}{32 \pi^{2} M^{2}}, \tag{19}
\end{equation*}
$$

meaning

$$
\begin{align*}
\frac{d \Gamma\left(0 \rightarrow 1^{\prime}+2^{\prime}\right)}{d \Omega} & \left.=\frac{p^{\prime}}{32 \pi^{2} M^{2}} \times\left|\left\langle p_{1}^{\prime}+p_{2}^{\prime}\right| \mathcal{M}\right| p_{0}\right\rangle\left.\right|^{2} \tag{20}\\
\Gamma\left(0 \rightarrow 1^{\prime}+2^{\prime}\right) & \left.=\frac{p^{\prime}}{32 \pi^{2} M^{2}} \times \int d^{2} \Omega\left|\left\langle p_{1}^{\prime}+p_{2}^{\prime}\right| \mathcal{M}\right| p_{0}\right\rangle\left.\right|^{2} \tag{21}
\end{align*}
$$

