
Phase Space Factors

For quantum transitions to un-bound states — for example, an atom emitting a photon,

or a radioactive decay, or scattering, which is a kind of unbound→ unbound transition, —

the transition rate is given by the Fermi’s golden rule:

Γ
def
=

d probability

d time
=

2πρ

h̄
×
∣∣∣〈final| T̂ |initial〉

∣∣∣2 (1)

where T̂ = Ĥperturbation + higher order corrections, and ρ is the density of final states,

ρ =
dNfinal states

dEfinal
. (2)

For example, for an atom emitting a photon, and using the large-box normalization for the

photon’s states, we have

dNfinal = 2polarizations ×
(
L

2π

)3

d3kγ =
2L3

(2π)3
× k2

γ dkγ d
2Ωγ (3)

while dEfinal = dEγ = h̄cdkγ , hence

ρ = L3 ×
2k2
γ

(2π)3h̄c
× d2Ωγ , (4)

where the L3 factor cancels against the L−3/2 factor in the matrix element 〈atom′ + γ| T̂ |atom〉
due to the photon’s wave function. As to the remaining d2Ωγ factor, we should integrate

over it to get the total decay rate, or divide by it to get the partial emission rate dΓ/dΩ for

photons going into a particular direction.

In relativistic normalization of quantum states and matrix elements, there are no L−3/2

factors but instead there are
√

2E factors for each final-state or initial state particle, and

they must be compensated by dividing the density of states ρ by the
∏
i(2Ei). Also, we

must allow for motion of all the final-state particles (i.e., both the photon and the recoiled

atom) but impose the momentum conservation as a constraint. Thus, for a decay of 1 initial
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particle into n final particles,

Γ =
1

2Ein

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|pin〉
∣∣2×(2π4)δ(4)(p′1+· · ·+p′n−pin),

(5)

where the δ function takes care of both momentum conservation and of the denominator

dEf in the density-of-states factor (2). Likewise, the transition rate for a generic 2 → n

scattering process is given by

Γ =
1

2E1 × 2E2

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).

(6)

In terms of the scattering cross-section σ, the rate Γ = σ × flux of initial particles. In the

large-box normalization, the flux is L−3|v1 − v2|, so in the continuum normalization it’s

simply the relative speed |v1 − v2|. Consequently, the total scattering cross-section is given

by

σtot =
1

4E1E2|v1 − v2|

∫
d3p′1

(2π)3 2E′1
· · ·
∫

d3p′n
(2π)3 2E′n

∣∣〈p′1, . . . , p′n∣∣M|p1, p2〉
∣∣2 ×

× (2π4)δ(4)(p′1 + · · ·+ p′n − p1 − p2).
(7)

In particle physics, all the factors in eqs (5) or (7) besides the matrix elements — as well as

the integrals over such factors — are collectively called the phase space factors.

A note on Lorentz invariance of decay rates or cross-sections. The matrix elements

〈final|M |initial〉 are Lorentz invariant, and so are all the integrals over the final-particles’

momenta and the δ-functions. The only non-invariant factor in the decay-rate formula (5)

is the pre-integral 1/Einit, hence the decay rate of a moving particle is

Γ(moving) = Γ(rest frame)× M

E
(8)

where M/E is precisely the time dilation factor in the moving frame.

As to the scattering cross-section, it should be invariant under Lorentz boosts along the

initial axis of scattering, thus the same cross-section in any frame where p1 ‖ p2. This
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includes the lab frame where one of the two particles is initially at rest, the center-of-mass

frame where p1 +p2 = 0, and any other frame where the two particles collide head-on. And

indeed, the pre-integral factor is

1

4E1E2|v1 − v2|
=

1

4|E1p2 − E2p1|
(9)

in eq. (7) for the cross-section is invariant under Lorentz boosts along the scattering axis.

Let’s simplify eq. (7) for a 2 particle→ 2 particle scattering process in the center-of-mass

frame where p1 + p2 = 0. In this frame, the pre-exponential factor (9) becomes

1

4|p| × (E1 + E2)
(10)

while the remaining phase space factors amount to

Pint =

∫
d3p′1

(2π)3 2E′1

∫
d3p′2

(2π)3 2E′2
(2π)4δ(3)(p′1 + p′2)δ(E′1 + E′2 − Enet)

=

∫
d3p′1

(2π)3 × 2E′1 × 2E′2
(2π)δ(E′1(p′1) + E′2(−p′1)− Enet)

=

∫
d2Ωp′ ×

∞∫
0

dp′
p′2

16π2E′1E
′
2

× δ(E′1 + E′2 − Etot)

=

∫
d2Ωp′

[
p′2

16π2E′1E
′
2

/
d(E′1 + E′2)

dp′

]when

E′
1+E′

2=Etot

.

(11)

On the last 3 lines here E′1 = E′1(p′1) =
√
p′2 +m′21 while E′2 = E′2(p′2 = −p′1) =

√
p′2 +m′22 .

Consequently,

dE′1
dp′

=
p′

E′1
,

dE′2
dp′

=
p′

E′2
, (12)

hence

d(E′1 + E′2)

dp′
=

p′

E′1
+

p′

E′2
=

p′

E′1E
′
2

× (E′2 + E′1 = Etot), (13)

and therefore

Pint =
1

16π2
× p′

Etot
×
∫
d2Ωp′ . (14)
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Including the pre-integral factor (10), we arrive at the net phase space factor

P =
p′

p
× 1

64π2E2
tot

×
∫
d2Ωp′ . (15)

The matrix elementM for the scattering should be put inside the direction-angle integral

in this phase-space formula. Thus, the total scattering cross-section is

σtot(1 + 2→ 1′ + 2′) =
p′

p
× 1

64π2E2
cm
×
∫
d2Ω

∣∣〈p′1 + p′2
∣∣M|p1 + p2〉

∣∣2 , (16)

while the partial cross-section for scattering in a particular direction is

dσ(1 + 2→ 1′ + 2′)

dΩcm
=

p′

p
× 1

64π2E2
cm
×
∣∣〈p′1 + p′2

∣∣M|p1 + p2〉
∣∣2 . (17)

Note: the total cross-section is the same in frames where the initial momenta are collinear,

but in the partial cross-section, dΩ depends on the frame of reference, so eq. (17) applies

only in the center-of mass frame. Also, the Ecm factor in denominators of both formulae

stands for the net energy in the center-of-mass frame. In frame-independent terms,

E2
cm = (p1 + p2)2 = (p′1 + p′2)2 (18)

Finally, let me write down the phase-space factor for a 2-body decay (1 particle →
2 particles) in the rest frame of the initial particle. The under-the-integral factors for such

a decay are the same as in eq. (14) for a 2 → 2 scattering, but the pre-integral factor is

1/2Minit instead of the (10), thus

P =
p′

32π2M2
, (19)

meaning

dΓ(0→ 1′ + 2′)

dΩ
=

p′

32π2M2
×
∣∣〈p′1 + p′2

∣∣M|p0〉
∣∣2 , (20)

Γ(0→ 1′ + 2′) =
p′

32π2M2
×
∫
d2Ω

∣∣〈p′1 + p′2
∣∣M|p0〉

∣∣2 . (21)
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