
Feynman Propagator of a Scalar Field

Earlier in class, I have defined the Feynman propagator of a free real scalar field as a

time-ordered correlation function of two scalar fields in the vacuum state,

GF (x− y)
def
= 〈0|TΦ̂(x)Φ̂(y) |0〉 . (1)

We saw that

GF (x−y) = θ(x0 > y0)×D(x−y) + θ(x0 < y0)×D(y−x) =

{

D(x− y) when x0 > y0,

D(y − x) when x0 < y0,
(2)

where

D(x− y)
def
=

∫

d3k

(2π)3
1

2ωk

× exp
(

−ik(x − y)
)k0=+ωk

. (3)

A complex scalar field has a similar propagator, but the correlation function involves one Φ̂

field and one Φ̂† field,

〈0|TΦ̂†(x)Φ̂(y) |0〉 = 〈0|TΦ̂(x)Φ̂†(y) |0〉 = GF (x− y). 〈〈 same GF as for a real scalar 〉〉
(4)

In these notes, I shall show that the propagator (1) is a Green’s function of the Klein–

Gordon equation, and then I shall explain why there are many different Green’s functions and

which particular Green’s function happens to be the Feynman propagator.

The Feynman propagator is a Green’s function

A free scalar field obeys the Klein–Gordon equation (∂2 + m2)Φ̂(x) = 0. Consequently,

the Feynman propagator (1) for the Φ̂ is a Green’s function of that equation,

(∂2 +m2)GF (x− y) = −iδ(4)(x− y). (5)

Note the delta-function on the RHS is in all four dimensions of the spacetime.
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To prove eq. (5), we start with a Lemma: the time derivative of a time-ordered product

of two operators Â(t) and B̂(t0) obtains as

∂

∂t

(

TÂ(t)B̂(t0)
)

= T

(

∂Â(t)

∂t

)

B̂(t0) + δ(t− t0)×
[

Â(t), B̂(t0)
]

. (6)

Proof (of the lemma):

TÂ(t)B̂(t0)
def
= θ(t > t0)× Â(t)B̂(t0) + θ(t < t0)× B̂(t0)Â(t), (7)

∂

∂t
θ(t > t0) = +δ(t− t0),

∂

∂t
θ(t < t0) = −δ(t− t0), (8)

therefore

∂

∂t

(

TÂ(t)B̂(t0)
)

=
∂

∂t

(

θ(t > t0)× Â(t)B̂(t0)
)

+
∂

∂t

(

θ(t < t0)× B̂(t0)Â(t)
)

= δ(t− t0)× Â(t)× B̂(t0) + θ(t > t0)×
∂Â(t)

∂t
× B̂(t0)

− δ(t− t0)× B̂(t0)× Â(t) + θ(t < t0)× B̂(t)× ∂Â(t)

∂t

〈〈 reorganizing terms 〉〉

= δ(t− t0)×
(

Â(t)B̂(t0) − B̂(t0)Â(t)
)

+

(

θ(t > t0)
∂Â

∂t
B̂(t0) + θ(t < t0)B̂(t0)

∂Â

∂t

)

= δ(t− t0)×
[

Â(t), B̂(t0)
]

+ T

(

∂Â(t)

∂t
B̂(t0)

)

.

(9)

Q.E .D.

Now let’s prove that the propagator (1) is a Green’s function. In light of the lemma (6),

∂

∂x0
GF (x− y) = 〈0| ∂

∂x0

(

TΦ̂(x)×̂Φ(y)
)

|0〉

= 〈0|T
(

∂0Φ̂(x)× Φ̂(y)
)

|0〉 + δ(x0 − y0)× 〈0|
[

Φ̂(x), Φ̂(y)
]

|0〉 .
(10)

In the second term on the bottom line here, the quantum fields Φ̂(x) and Φ̂(y) are at equal

times x0 = y0, so they commute with each other. Consequently, the second term vanishes,
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and we are left with

∂

∂x0
GF (x− y) = 〈0|T

(

∂0Φ̂(x)× Φ̂(y)
)

|0〉 . (11)

Now let’s take another time derivative. Again, using the lemma (6), we obtain

∂20GF (x− y) =
∂

∂x0
〈0|T

(

∂0Φ̂(x)× Φ̂(y)
)

|0〉

= 〈0|T
(

∂20 Φ̂(x)× Φ̂(y)
)

|0〉 + δ(x0 − y0)× 〈0|
[

∂0Φ̂(x), Φ̂(y)
]

|0〉 .
(12)

This time, in the second term on the bottom line, ∂0Φ̂(x) = Π̂(x), and at equal times x0 = y0

it does not commute with the Φ̂(y). Instead,

for x0 = y0,
[

Π̂(x), Φ̂(y)
]

= −iδ(3)(x− y), (13)

hence

δ(x0 − y0)× 〈0|
[

∂0Φ̂(x), Φ̂(y)
]

|0〉 = −iδ(3)(x− y)× δ(x0 − y0) = −iδ(4)(x− y). (14)

Thus, eq. (12) reduces to

∂20GF (x− y) = 〈0|T
(

∂20Φ̂(x)× Φ̂(y)
)

|0〉 − iδ(4)(x− y). (15)

Now consider the space-derivative terms in the Klein-Gordon equation. Since the space

derivatives commute with the time-ordering,

∇2
xGF (x− y) = ∇2

x 〈0|
(

TΦ̂(x)× Φ̂(y)
)

|0〉 = 〈0| T
(

∇2Φ̂(x)× Φ̂(y)
)

|0〉 (16)

without any extra terms. Combining this formula with eq. (15), we obtain

(

∂20 −∇2 +m2
)

GF (x− y) = 〈0|T
(

(∂20 −∇2 +m2)Φ̂(x)× Φ̂(y)
)

|0〉 − iδ(4)(x− y). (17)

On the RHS of this formula, the quantum field Φ̂(x) obeys the Klein–Gordon equation (∂20 −
∇2 +m2)Φ̂(x) = 0, which kills the first term. Only the second term — the delta function —

survives on the RHS, thus

(

∂20 −∇2 +m2
)

GF (x− y) = −iδ(4)(x− y), (18)

which proves that GF (x− y) is a Green’s function of the Klein–Gordon equation. Q.E .D.
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General Green’s functions and the Feynman’s choice

In general, the same differential equation may have many different Green’s functions,

depending on the boundary conditions, etc. So let’s consider a generic Green’s function of the

Klein–Gordon equation, that is, some function G(x− y) satisfying

(∂2 +m2)G(x− y) = −iδ(4)(x− y). (19)

Let’s Fourier transform this function in all four dimensions, thus

G(x− y) =

∫

d4k

(2π)4
e−ik(x−y) × G̃(k). (20)

In the 4–momentum space, eq. (19) becomes

(−k2 +m2)× G̃(k) = −i, (21)

hence naively

G(k) =
i

k2 −m2
(22)

and therefore

G(x− y) =

∫

d4k

(2π)4
ie−ik(x−y)

k2 −m2
. (23)

The problem with this naive formula is that it integrates over the singularities of the

integrand. Indeed, the denominator k2 − m2 = k20 − k2 − m0 vanishes on the mass shells

k0 = ±
√
k2 +m2, so we have two 3D families of poles. In general, an integral of a singular

function over its pole is ill-defined, and we must regularize it to get a definite answer. For the

Green’s function in question, we must regulate two 3D-families of poles, thus

G(x) =

∫

reg

d4k

(2π)4
ie−ik(x−y)

k2 −m2
=

∫

d3k

(2π)3
eix·k ×

∫

reg

dk0

2π

ie−itk0

k20 − k2 −m2
. (24)

In other words, we integrate over the k0 before we integrate over the k. In the
∫

dk0 integral,

we encounter two simple poles at k0 = ±ωk, and we must somehow regularize them to get

a definite result. Only then we integrate that result over k; hopefully, that integral does not

encounter any singularities.
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Alas, the devil is in the details: There are many different ways to regularize an integral,

and regulators yield different regularized integrals — which eventually yield many different

Green’s functions (24) of the same Klein–Gordon equation.

In these notes, we are going to use a particularly simple way to regulate an integral over

a simple pole — move the pole away from the real axis into the complex plane,

∫

reg

dx
f(x)

x− x0
=

∫

dx
f(x)

x− (x0 ± iǫ)
(25)

for an infinitesimal ǫ → +0. Equivalently, we may leave the pole real but deform the integra-

tion contour slightly away from the real axis so that it bypasses the pole,

=

x0 − iǫ

or

=
x0 + iǫ

Note that the contour above the pole and the contour below the pole — or equivalently,

shifting the pole below or above the real axis — makes for a different regulator which produces

a different regularized integral:

∫

dx
f(x)

x− (x0 + iǫ)
−
∫

dx
f(x)

x− (x0 − iǫ)
= 2πi× f(x0). (26)

In the context of the integral (24), there are two poles in the
∫

dk0 for every k, so we

must make our choices. For the sake of Lorentz invariance, we should use the same regulator

for every k, which leaves with 2× 2 = 4 choices:

• Move the pole at k0 = +ωk to +ωk + iǫ or to +ωk − iǫ.

• Move the pole at k0 = −ωk to −ωk + iǫ or to −ωk − iǫ.
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The 4 choices give rise to 4 distinct Lorentz-invariant Green’s functions, namely:

1. Causal retarded Green’s function GR for poles at k0 ± ωk − iǫ,

2. Causal advanced Green’s function GA for poles at k0 ± ωk + iǫ,

3. Time-ordered Green’s function GF for poles at k0 ± (ωk − iǫ),

This Green’s function is the Feynman’s propagator (1).

4. Anti-time-ordered Green’s function GAT for poles at k0 = ±(ωk + iǫ),

Feynman’s Choice

Let’s focus on the Feynman’s choice of the poles at +ωk − iǫ and −ωk + iǫ. Altogether,

the denominator of the integrand in eq. (24) is

(k0−ωk+iǫ)×(k0+ωk−iǫ) = k20 − (ωk−iǫ)2 ≈ k20 − ω2
k + 2iωkǫ = k20 − k2 −m2 + iǫ×2ωk.

(27)

In the last expression, we may replace ǫ× 2ωk with simply ǫ, since all we care about is is that
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it’s a positive infinitesimal number → +0. Thus

denominator = k20 − k2 − m2 + iǫ = k2 − m2 + iǫ, (28)

hence manifestly Lorentz invariant expression for the Feynman’s Green’s function as

GF (x− y) =

∫

d4k

(2π)4
ie−ikx

k2 −m2+iǫ
. (29)

In this section of the notes, we shall see that this Green’s function is precisely the Feynman

propagator (1). Without loss of generality, let’s set y = 0. In light of eq. (2), we expect two

different cases according to the sign of the t = x0. Let’s start with the t > 0 case and deal

with t < 0 later.

We begin to evaluate the 4D integral (29) by integrating over the k0 for a fixed k,

I(t, ωk) =

∫

dk0

2π

ie−itk0

k20 − ω2
k
+ iǫ

, (30)

then GF (x, t) =

∫

d3k

(2π)3
eix·k × I(t, ωk) (31)

In the integral (30), the integration contour is the real axis, while the two poles lie near the

axis — but not quite on it — as on the following diagram

(32)

Outside the real axis, the exponential e−itk0 — with positive t — rapidly decreases for large

negative Im(k0). Consequently, we may close the integration contour by adding to it a large

semicircular arc in the negative Im(k0) half of the complex plane. Thus,

I(t, ωk) =

∮

Γ

dk0

2π

ie−itk0

(k0 − ωk + iǫ)(k0 + ωk − iǫ)
(33)
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where

Γ = (34)

The closed-contour integrals like (33) may be evaluated in terms of residues at the poles

surrounded by the contour. For the contour (34)at hand, the pole at +ωk − iǫ lies inside the

contour while the other pole lies outside the contour. Consequently,

I(t, ωk) = −2πi× Residue at k0 = +ωk − iǫ, (35)

where the overall −2πi factor is due to clockwise direction of the contour. Specifically,

I(t, ωk) = −2πi×
(

ie−itk0

2π × (k0 − ωk + iǫ)× (k0 + ωk − iǫ)

)

k0=+ωk−iǫ

= +
exp(−it(ωk − iǫ))

2(ωk − iǫ)

〈〈 taking the ǫ → +0 limit, which is non-singular 〉〉

= +
e−itωk

2ωk

.

(36)

Plugging this result into eq. (31), we have

GF (x) =

∫

d3k

(2π)3
eix·k × e−itωk

2ωk

=

∫

d3k

(2π)3
1

2ωk

exp(ix · k− itωk) = D(x), (37)

in perfect agreement with the Feynman propagator (1) for t > 0, cf. eq. (2).
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Now let’s turn to the t < 0 case. Again, we need to take the integral

I(t, ωk) =

∫

dk0

2π

ie−itk0

k20 − ω2
k
+ iǫ

(30)

along the real axis, bypassing the poles according to

(32)

However, for a negative t, the exponential e−itk0 decreases for large positive Im(k0) (rather

than large negative Im(k0) as we had for positive t), so to close the integration contour (32)

we should add a large semicircular arc in the positive half of the complex plane. Thus,

I(t, ωk) =

∮

Γ′

dk0

2π

ie−itk0

(k0 − ωk + iǫ)(k0 + ωk − iǫ)
(38)

where

Γ′ = (39)

Unlike the contour (34) which we have used for positive t, the contour (39) surrounds the
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negative-frequency pole at k0 = −ωk + iǫ. It is also counterclockwise, hence

I(t, ωk) = +2πi× Residue at k0 = −ωk + iǫ

= +2πi×
(

ie−itk0

2π × (k0 − ωk + iǫ)× (k0 + ωk − iǫ)

)

k0=−ωk+iǫ

= −exp(−it(−ωk + iǫ))

2(−ωk + iǫ)

〈〈 taking the ǫ → +0 limit, which is non-singular 〉〉

= +
e+itωk

2ωk

.

(40)

Plugging this k0 integral into the
∫

d3k integral (31), we obtain

GF (x, t) =

∫

d3k

(2π)3
e+ix·k × e+itωk

2ωk

= D(+x,−t).

At first blush, this is not quite the answer we want, but fortunately D is invariant under

orthochronous Lorentz transformation, and in particular under any rotations of the 3D space.

Consequently

D(+x,−t) = D(−x,−t), (41)

and therefore

for t < 0, GF (x) = D(−x), (42)

in perfect agreement with eq. (2).

Altogether, eqs. (37) and (42) tell us that the Feynman’s Green’s function

GF (x− y) =

∫

d4k

(2π)4
ie−ikx

k2 −m2+iǫ
=

{

D(x− y) when x0 > y0

D(y − x) when x0 < y0

}

= 〈0|TΦ̂(x)Φ̂(y) |0〉

(43)

is precisely the time-ordered correlation function of two free scalar fields.
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Other Green’s functions

Besides the Feynman’s time-ordered Green’s function, there are other useful Green’s func-

tions (of the same Klein-Gordon equation) which obtain for other choices of regularizing the

poles. Of particular interest is the causal retarded Green’s function

GR(x− y) =

∫

d3x

(2π)3
ei(x−y)k ×

∫

dk0

2π

i e−i(x0−y0)k0

(k0 − ωk + iǫ)(k0 + ωk + iǫ)
, (44)

which obtains by shifting both poles below the real axis,

(45)

As before, we close this contour by adding a large semicircular arc in the lower or upper half

of the complex plane, depending on the sign of the time difference t = x0 − y0. In particular,

for t < 0 we close the contour above the real axis,

Γ′ = (46)

which puts both poles outside the contour. Consequently, the contour integral vanishes alto-

gether, thus

GR(x− y) = 0 when x0 − y0 < 0. (47)

This is why this Green’s function is called retarded: time-wise, the point x must follow the
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point y, hence in the context of a source j(y) and the induced field

φ(x) =

∫

d4y GR(x− y)× j(y), (48)

the source at point y affects the field φ(x) only at later times x0 > y0 that the field.

Now let’s see what GR(x − y) looks like for t = x0 − y0 > 0. This time, we close the

contour (45) below the real axis,

Γ = (49)

so both poles are inside the contour. Consequently,

IR(t, ω) =

∫

Γ

dk0

2π

i e−itk0

(k0 − ω + iǫ)(k0 + ω + iǫ)

= −2πi× Residue @(k0 = +ω − iǫ) − 2πi× Residue @(k0 = −ω − iǫ)

=
−2πi

2π
×
(

ie−itk0

(k0 − ω + iǫ)× (k0 + ω + iǫ)

)

k0=+ω−iǫ

+
−2πi

2π
×
(

ie−itk0

(k0 − ω + iǫ)× (k0 + ω + iǫ)

)

k0=−ω−iǫ

= +
e−it(ω−iǫ)

2(ω − iǫ)
+

e−it(−ω−iǫ)

2(−ω − iǫ

= +
e−itω

2ω
− e+itω

2ω
.

(50)
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Plugging this integral over the d3k, we obtain

For x0 > y0, GR(x− y) =

∫

d3k

(2π)3
eik(x−y) × e−itωk − e+itωk

2ωk

= D(x− y; t) − D(x− y;−t)

= D(x− y; t) − D(y− x;−t)

= D(x− y) − D(y − x).

(51)

Note that the bottom line here vanishes for spacelike (x−y), which makes the Green’s function

GR not only retarded but also causal: it vanishes unless y lies in the future light cone from x.

Similar to the causal retarded Green’s function GR(x−y) we can make the causal advanced

Green’s function GA(x− y) by shifting both poles above the real axis,

GA(x− y) =

∫

d3x

(2π)3
ei(x−y)k ×

∫

dk0

2π

i e−i(x0−y0)k0

(k0 − ωk − iǫ)(k0 + ωk − iǫ)
(52)

(53)

As its name suggests, this Green’s function vanishes unless y is in the past light cone from x.

Finally, the fourth choice of regularized poles

(54)

produce the anti-time-ordered Green’s function

GAT (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 − iǫ
=

{

−D(y − x) when x0 > y0,

−D(x− y) when y0 > x0.
(55)

13



Propagators for non-scalar fields

Let me conclude these notes with a few words about propagators for the non-scalar rel-

ativistic fields — the vector fields, the tensor fields, the spinor fields, etc., etc. For all such

fields, the Feynman propagator is the time-ordered correlation function of two free fields in

the vacuum state, for example

G
µν
F (x− y) = 〈0|T∗Âµ(x)× Âν(y) |0〉 (56)

for the massive vector fields (see homework set#5 for details), or

S
αβ
F (x− y) = 〈0| TΨ̂α(x)× Ψ̂β(y) |0〉 (57)

for the Dirac spinor field Ψ̂β(x) and its conjugate Ψ̂α(x) (to be explained in future classes).

All such propagators are Green’s functions of the equations of motion for the appropriate

fields. For example, the free massive vector fields obey

(

gµν(∂
2 +m2) − ∂µ∂ν

)

Aν = 0, (58)

so the propagator is a Green’s function of the differential operator here,

(

gµν(∂
2 +m2) − ∂µ∂ν

)

Gνλ
F = −iδλµ × δ(4)(x− y). (59)

(The proof is part of homework set#5.) Likewise, the free Dirac spinor fields Ψα(x) obey the

Dirac equation

(

iγµ∂µ −m
)

αβ
Ψβ(x) = 0, (60)

so the Dirac propagator is a Green’s function of the Dirac equation,

(

iγµ∂µ −m
)

αβ
S
βδ
F (x− y) = −iδδα × δ(4)(x− y). (61)

(I shall prove this in class in a few weeks.)
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Moreover, all such Green’s functions involve momentum integrals over poles along both

mass shells k0 = ±ωk, and those poles must be regularized. But for all the Feynman propa-

gators, the poles must be regularized just as we did for the scalar field, the pole at k0 = +ωk

shifts below the real axis to +ωk − iǫ while the pole at k0 = −ωk shifts above the real axis to

−ωk + iǫ. Consequently, all the Feynman propagators have momentum-space form of

(propagator)indices(x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
× F indices(k) (62)

for some simple — and hopefully non-singular — function F indices(k). For example, for the

massive vector field

G
µν
F (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
×
(

−gµν − kµkν

m2

)

, (63)

while for the Dirac spinor field

S
αβ
F (x− y) =

∫

d4k

(2π)4
i e−ik(x−y)

k2 −m2 + iǫ
×
(

kµγµ +m
)αβ

. (64)

In general, for a massive field the function F indices(k) is simply a polynomial of k of degree

2 × Spin. For a massless spin = 1
2 field F indices(k) is also a polynomial, but for a massless

vector field — or any other kind of a gauge field — it becomes non-polynomial and gauge-

dependent. I shall explain the Feynman propagator for the EM fields later in class, probably

sometimes in November.
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