
Finite Multiplets of the Spin(3,1) Group.

In these notes I classify all the finite multiplets of the continuous Lorentz group SO+(3, 1),

or rather of its double-covering group Spin(3, 1). The notes are insterspersed with optional

exercises for the students. The solutions to the exercises will appear in a separate page

separate page.

I presume you read these notes after finishing your homework#5 and homework#6,

so you should be familiar with the Lorents Ĵ and K̂ generators and their Dirac spinor

representations. In these notes, it’s convenient to re-organize the Ĵ and K̂ generators into

two non-hermitian 3-vectors

Ĵ+ = 1
2

(
Ĵ + iK̂

)
and Ĵ− = 1

2

(
Ĵ − iK̂

)
= Ĵ†+. (1)

1. Show that the two 3-vectors commute with each other, [Ĵk+, Ĵ
`
−] = 0, while the compo-

nents of each 3-vector satisfy angular momentum commutation relations, [Ĵk+, Ĵ
`
+] =

iεk`mĴm+ and [Ĵk−, Ĵ
`
−] = iεk`mĴm− .

By themselves, the 3 Ĵk+ generate a symmetry group similar to rotations of a 3D space,

but since the Ĵk+ are non-hermitian, the finite irreducible multiplets of this symmetry are

non-unitary analytic continuations (to complex “angles”) of the ordinary angular momentum

multiplets (j) of spin j = 0, 12 , 1,
3
2 , 2, . . .. Likewise, the finite irreducible multiplets of the

symmetry group generated by the Ĵk− are analytic continuations of the spin-j multiplets of

angular momentum. Moreover, the two symmetry groups commute with each other, so the

finite irreducible multiplets of the net Lorentz symmetry are tensor products (j+) ⊗ (j−)

of the Ĵ+ and Ĵ− multiplets. In other words, distinct finite irreducible multiplets of the

Lorentz symmetry may be labeled by two integer or half-integer ‘spins’ j+ and j−, while

the states within such a multiplet are |j+, j−,m+,m−〉 for m+ = −j+, . . . ,+j+ and m− =

−j−, . . . ,+j−.

The simplest non-trivial Lorentz multiplets are two inequivalent doublets, the left-handed

Weyl spinor 2 and the right-handed Weyl spinor 2∗. The 2 multiplet has j+ = 1
2 while j− = 0,

hence Ĵ+ acts as 1
2
σσ while Ĵ− does not act at all, or in terms of the Ĵ and K̂ generators
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J = 1
2
σσ while K = − i

2
σσ. The conjugate 2∗ multiplet has j− = 1

2 while j+ = 0, hence Ĵ acts

as 1
2
σσ while K̂ acts as + i

2
σσ.

2. Check that these two doublets are indeed the LH Weyl spinors and the RH Weyl spinor

from the homework set#6 (problem 2).

3. Check that for finite Lorentz symmetries, the 2× 2 matrices ML and MR representing

them in the LH and the RH Weyl spinor multiplets have determinant = 1.

The complex (but not necessary unitary) 2×2 matrices of unit determinant form a non-

compact group called the SL(2,C). This group is isomorphic to the Spin(3, 1), the double

cover of the continuous Lorentz group SO+(3, 1). Just like the SU(2) is isomorphic to the

Spin(3), the double cover of the SO(3) rotation group.

For the Spin(3) = SU(2) group, one can construct a multiplet of any spin j from a

symmetric tensor product of 2j doublets. This procedure gives us an object Φα1,...,α2j
with

2j spinor indices α1, . . . , α2j = 1, 2 that’s totally symmetric under permutation of those

indices and transforms under an SU(2) symmetry U as

Φα1,α2...,α2j
→ U β1

α1
U β2
α2
· · ·U β2j

α2j
Φβ1,β2...,β2j

. (2)

For integer j, such objects are equivalent to tensors of the SO(3); for example, for j = 2

Φαβ ≡ Φβα is equivalent to an SO(3) vector ~Φ.

For the Lorentz group Spin(3, 1) we have a similar situation — any multiplet can be

constructed by tensoring together a bunch of two-component spinors of the SL(2,C). But

unlike the SU(2), the SL(2,C) has two different spinors 2 6∼= 2∗ transforming under different

rules. Notationally, we shall distinguish them by different index types: the un-dotted Greek

indices belong to spinor that transform according to M ∈ SL(2,C) while the dotted Greek

indices belong to spinors that transform according to M∗:

(ψL)α → M β
α (ψL)β 6∼= (σ2ψR)γ̇ → M∗δ̇γ̇ (σ2ψR)

δ̇
, M ∈ SL(2,C). (3)

Combining such spinors to make a multiplet with ‘spins’ j+ and j−, we make an ob-

ject Φα1,...,α(2j+)
;γ̇1,...,γ̇(2j−)

with 2j+ un-dotted indices and 2j− dotted indices. Φ... is totally
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symmetric under permutations of the un-dotted indices with each other or dotted indices

with each other, but there is no symmetry between dotted and un-dotted indices. Under an

SL(2,C) symmetry M , the un-dotted indices transform according to M while the dotted

indices transform according to the M∗, thus

Φα1,...,α(2j+);γ̇1,...,γ̇(2j−)
→ M β1

α1
· · ·M

β(2j+)

α
(2j+)
×M∗Mδ̇1

γ̇1
· · ·M

∗Mδ̇(2j−)

γ̇
(2j−)

· · · × Φ
β1,...,β(2j+)

;δ̇1,...,δ̇(2j−)

.

(4)

Of particular importance among such multi-spinors is the bi-spinor Vαγ̇ with j+ = j− = 1
2

— it is equivalent to the Lorentz vector V µ. The map between bi-spinors and Lorentz vectors

involves four hermitian 2 × 2 matrices σµ = (1, σσ). In SL(2,C) terms, each σµ matrix has

one dotted and one un-dotted index, thus (σµ)αγ̇ . Using the σµ, we may re-cast any Lorentz

vector V µ as a matrix

V µ → V µσµ = V 0 + V · σσ (5)

an hence as a
(
1
2 ,

1
2

)
bi-spinor

Vαγ̇ =
(
V µσµ

)
αγ̇

= V 0δαγ̇ + V · σσαγ̇ . (6)

Under an SL(2,C) symmetry, the bi-spinor transforms as

Vαγ̇ → V ′αγ̇ = M β
αM

∗δ̇
γ̇ V

βδ̇
, (7)

or in matrix form,

V µσµ → V ′µσµ = M (V µσµ)M †. (8)

Since the four matrices σµ form a complete basis of 2 × 2 matrices, eq. (8) defines a linear

transform V ′µ = Lµν(M)V ν .

4. Prove that for any SL(2,C) matrix M , the transform Lµν(M) defined by eq. (8) is real

(real V ′µ for real V µ), Lorentzian (preserves V ′µV
′µ = VµV

µ) and orthochronous.

Hint: prove and use det(Vµσ
µ) = VµV

µ.

? For extra challenge, show that this transform is proper, det(L) = +1.
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5. Verify that this SL(2,C) → SO+(3, 1) map respects the group law, L(M2M1) =

L(M2)L(M1).

6. Show that for the L(M) defined by eq. (8), the LH Weyl spinor representation of L(M)

is ML(L) = M while the RH Weyl spinor representation is M = σ2M
∗σ2.

In general, any (j+, j−) multiplet of the SL(2,C) with integer net spin j++j− is equiva-

lent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the

tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2–index

tensor Tµν = +T νµ, Tµµ = 0. For j+ 6= j− the representation is complex, but one can

make a real tensor by combining two multiplets with opposite j+ and j−, for example the

(1, 0) and the (0, 1) multiplets are together equivalent to the antisymmetric 2–index tensor

Fµν = −F νµ.

7. Verify the above examples.

Hint: For any kind of angular momentum, (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).
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