Finite Multiplets of the Spin(3,1) Group.

In these notes I classify all the finite multiplets of the continuous Lorentz group SO (3,1) ]
or rather of its double-covering group Spin(3,1). The notes are insterspersed with optional
exercises for the students. The solutions to the exercises will appear in a separate page

beparate pagdq.

I presume you read these notes after finishing your homeworkZ9 and homeworkZ0Q,

so you should be familiar with the Lorents J and K generators and their Dirac spinor
representations. In these notes, it’s convenient to re-organize the J and K generators into

two non-hermitian 3-vectors
Jy = 33 +4K) and J_ = 1(J - iK) = JL. (1)

1. Show that the two 3-vectors commute with each other, [j _’ﬁ, Jt ] = 0, while the compo-
nents of each 3-vector satisfy angular momentum commutation relations, [j _’f_, jﬁ] =
ikt e and [JE, JE) = ekt gm.

By themselves, the 3 J _]ﬁ generate a symmetry group similar to rotations of a 3D space,
but since the .J _lﬁ are non-hermitian, the finite irreducible multiplets of this symmetry are
non-unitary analytic continuations (to complex “angles”) of the ordinary angular momentum
multiplets (j) of spin j = 0, %, 1, %, 2,.... Likewise, the finite irreducible multiplets of the
symmetry group generated by the J* are analytic continuations of the spin-j multiplets of
angular momentum. Moreover, the two symmetry groups commute with each other, so the
finite irreducible multiplets of the net Lorentz symmetry are tensor products (j;+) ® (j-)
of the j+ and J_ multiplets. In other words, distinct finite irreducible multiplets of the
Lorentz symmetry may be labeled by fwo integer or half-integer ‘spins’ j; and j_, while
the states within such a multiplet are |j4,j—,m4,m_) for mqy = —ji, ..., +jy and m_ =

—Jy ey T

The simplest non-trivial Lorentz multiplets are two inequivalent doublets, the left-handed
Weyl spinor 2 and the right-handed Weyl spinor 2*. The 2 multiplet has j; = % while j_ = 0,

hence J acts as %0' while J_ does not act at all, or in terms of the J and K generators
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J= %0’ while K = —%0’. The conjugate 2* multiplet has j_ = % while j. = 0, hence J acts
as %0 while K acts as +%0’.

2. Check that these two doublets are indeed the LH Weyl spinors and the RH Weyl spinor
from the pomework set#{ (problem 2).

3. Check that for finite Lorentz symmetries, the 2 x 2 matrices M, and Mp representing

them in the LH and the RH Weyl spinor multiplets have determinant = 1.

The complex (but not necessary unitary) 2 x 2 matrices of unit determinant form a non-
compact group called the SL(2,C). This group is isomorphic to the Spin(3,1), the double
cover of the continuous Lorentz group SO™(3,1). Just like the SU(2) is isomorphic to the
Spin(3), the double cover of the SO(3) rotation group.

For the Spin(3) = SU(2) group, one can construct a multiplet of any spin j from a

symmetric tensor product of 25 doublets. This procedure gives us an object Doy, with
Ot
27 spinor indices ay,...,ag; = 1,2 that’s totally symmetric under permutation of those
indices and transforms under an SU(2) symmetry U as
Birr B Ba;
Cayayeay, = UaUs) Uy ¢ﬁ17/82"'a/32j. 2)

For integer j, such objects are equivalent to tensors of the SO(3); for example, for j = 2

Pop = Ppq is equivalent to an SO(3) vector 3.

For the Lorentz group Spin(3,1) we have a similar situation — any multiplet can be
constructed by tensoring together a bunch of two-component spinors of the SL(2,C). But
unlike the SU(2), the SL(2, C) has two different spinors 2 2 2* transforming under different
rules. Notationally, we shall distinguish them by different index types: the un-dotted Greek
indices belong to spinor that transform according to M € SL(2,C) while the dotted Greek

indices belong to spinors that transform according to M*:
(Wr)a — MJ(Wr)s % (o2tr)y — MP(o2r);, M € SL(2,C). (3)

Combining such spinors to make a multiplet with ‘spins’ j; and j_, we make an ob-

ject @ with 274 un-dotted indices and 2j_ dotted indices. ®__ is totally

al,...,a(2j+);"yl,...,ﬁ(QL)
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symmetric under permutations of the un-dotted indices with each other or dotted indices
with each other, but there is no symmetry between dotted and un-dotted indices. Under an
SL(2,C) symmetry M, the un-dotted indices transform according to M while the dotted

indices transform according to the M*, thus

Baiy) «M$ Mo,
L s MBMLE Mo ) P L
061,...706(2j+)a’ylan.a’Y(2]'7) (&7 a(2j+) 71 7(2]‘,) 617"‘75(2j+);617"'75(2]'_)
(4)
Of particular importance among such multi-spinors is the bi-spinor V.5 with j, = j_ = %

— it is equivalent to the Lorentz vector V#. The map between bi-spinors and Lorentz vectors
involves four hermitian 2 x 2 matrices o, = (1,0). In SL(2,C) terms, each o, matrix has
one dotted and one un-dotted index, thus (0,)qy. Using the o, we may re-cast any Lorentz

vector V# as a matrix

VE & Vig, = VY + V.o (5)

an hence as a (%, %) bi-spinor

Voy = (VHO-H)CW - Vo(sa"y + V.04 (6)

Under an SL(2,C) symmetry, the bi-spinor transforms as

*0
Vs — Vig = MIM: Vi (7)
or in matrix form,
Vta, — VMo, = M (VFa,) M. (8)

Since the four matrices o, form a complete basis of 2 x 2 matrices, eq. (8) defines a linear

transform V'# = L5, (M)V".

4. Prove that for any SL(2, C) matrix M, the transform L*, (M) defined by eq. (8) is real
(real V' for real V#), Lorentzian (preserves V,;V'# =V}, V) and orthochronous.

Hint: prove and use det(V,,0*) =V, V*.

* For extra challenge, show that this transform is proper, det(L) = +1.



5. Verify that this SL(2,C) — SO™(3,1) map respects the group law, L(MyM;) =
L(Mz)L(My).

6. Show that for the L(M) defined by eq. (8), the LH Weyl spinor representation of L(M)
is My (L) = M while the RH Weyl spinor representation is M = oo M*0.

In general, any (j,j—) multiplet of the SL(2, C) with integer net spin j + j_ is equiva-
lent to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the
tensors.) For example, the (1,1) multiplet is equivalent to a symmetric, traceless 2-index
tensor TH = +T"F T} = 0. For j4 # j_ the representation is complex, but one can
make a real tensor by combining two multiplets with opposite j+ and j_, for example the

(1,0) and the (0,1) multiplets are together equivalent to the antisymmetric 2-index tensor
Frv — —Fvn,

7. Verify the above examples.

Hint: For any kind of angular momentum, (5 = %) ®(j = %) =(=1)@(=0).



