EM Field renormalization: the ¥*”(k) at One Loop

In QED, the two-photon 1PI bubble

ISP (k) =

should satisfy Ward identities
kyx ¥ (k) = 0, k,xX"(k) = 0. (2)

Between these identities and the Lorentz symmetry, the k—dependence of the ¥#¥(k) should

have form

S(k) = TI(K?) x (g™ x k* — k'E). (3)

In this section, we calculate the ¥#¥(k) to one-loop order and verify that it indeed has this

form.

In pure QED, there is only one 1-loop diagram with 2 photonic external legs, namely
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where po = p1 + k and the overall minus sign comes from the closed electron loop. To evaluate

the trace here, we use
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where
D = (p? —m?*+i0) x (p3 — m? +10) (8)
and
N = (5 (o + )y G+ m) )
= tr(y/py 1) + m*r(y"4*) )
= dph'ps + 4piph — 4(pip2)g"” + Amg".

In the denominator D, we may combine the two factors using the Feynman’s parameter

trick, thus
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Altogether,
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The second equality here obtains from changing the order of integration over the loop momen-

tum p; and over the Feynman parameter x, followed by shifting the loop momentum variable



from p; to p = p1 + xk. To make full use of this shift, we need to re-express the numerator

NP in terms of p, k, and z. Thus, using
pp=p—axxk p=p +k=p+ (1-2)xk, (14)

we obtain

PP+ php = 2pMp” + (1 2x) x (PMRY + KpY) — 2a(1 —x) x KR,
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(p1p2) = p2 + (1—2x) x (pk) — z(1 —2) x k‘Q, (15)

and hence

NP = 8p'p” + 4(1—2z) x (p'E” + k'p”) — 8x(l —x) x kHEY
2 2 2 (16)
+4g“”><<m - D —(1—2x)><(pk‘)+x(1—x)><k>.

There are many terms in this expression, and it is convenient to re-organize them into 3

groups: the good, the bad, and the odd, thus

N = Niooa + Maa + Naa (17)
where
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The purpose of this re-organization is to extract the good terms (18) — which clearly have

the desirable form (3) — while the remaining bad and odd terms should not contribute to the

momentum integral.

Indeed, consider the odd terms (20) which comprise all the odd powers of the independent

momentum variable p®. Consequently, under the symmetry p® — —p® (for all 4 components



of the p®) the N 5 dl/d changes its sign. One the other hand, the f d*p (over the whole momentum

space) is invariant under this symmetry, and so is the denominator [p? — A+4-i0]2. Consequently,
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The momentum integral over the bad terms (19) also vanishes, but proving that takes more

effort. First, let’s Wick rotate the momentum integral from the Minkowski to the Euclidean

space,
P’ = ipt, dYp = idpy, PP = 0%, (22)
and hence
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Note: even in the Euclidean momentum space, p and v remain Minkowski-signature vector

indices, so g"” remains the Minkowski metric tensor, and p*]iﬂ and p% should be understood as
(ip*, p", 0%, p?).

Second, let’s use the SO(4) symmetry of the Euclidean momentum space. Thanks to this

symmetry,
27T2 pEpE = 5” X —= 4 (24)
and hence for any spherically symmetric function f (pQE)
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Or in terms of the Minkowski indices p and v,
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More generally, in D spacetime dimensions,
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Applying this formula to the Euclidean momentum integral in eq (23) gives us
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For the moment D = 4, but we keep the dimension D as explicit parameter in order to allow
for the dimensional regularization of the momentum integral. Indeed, this integral badly needs
DR — or some other UV regulator — because it’s quadratically divergent in D = 4. Thus, we
let
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for generic D, evaluate the integral for D < 2 (which regulates the UV divergence), and then
analytically continue the result back to D = 4 — 2¢. As usual, to evaluate the integral for

non-integer D we relate the integrand to an exponential exp(—tp%). Specifically, we let
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The remaining integral over ¢ here converges for D < 2, and — moracle of miracles — it

happens to vanish identically for any D < 2. Indeed, up to the overall constant factor
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because I'(y + 1) — yI'(y) = 0 for any y. Consequently, analytically continuing from D < 2 to
D =4 — 2¢, we find that the dimensionally-regulated integral (28) vanishes and hence
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In other words, the bad terms in the numerator A** do not contribute to the photon’s /' lyoop(k).

At this point, the only terms in the the numerator N*” that do contribute to the inte-
gral (13) are the good terms (18), thus
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In other words, the one-loop ¥#” (k) does have the requisite form
Zllllyoop(k) = (gNVkQ - kﬂkV) X HllOOp(kQ) (35)
where
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It remains to evaluate the momentum integral in the last formula and then integrate over

x. The momentum integral has the form we have seen before in this class, so we evaluate it



in the usual way: Wick rotate p to the Euclidean momentum space, and then dimensionally

regularize the logarithmic divergence. Thus,
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Finally, using
1
Jawati—a) = &
rx(l—z) = =
6
0
we reduce eq. (38) to
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where
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Thus far, we have focused on the one-loop diagram (4) but ignored the counterterms.

Adding the 03 counterterm to the picture gives us
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Consequently, by setting
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we may cancel the ultraviolet divergence of the electron loop.
The finite part of the d3 counterterm follows from the requirement
e (k* = 0) = 0. (45)
Since 1(0) = 0, this means we need
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