
Correlation Functions in Perturbation Theory

Many aspects of quantum field theory are related to its n-point correlation functions

Fn(x1, . . . , xn) def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉 (1)

— or for theories with multiple fields Φ̂a,

Fa1,...,an
n (x1, . . . , xn)

def
= 〈Ω|TΦ̂a1H (x1) · · · Φ̂anH (xn) |Ω〉 . (2)

Note that all the fields Φ̂H(x) here are in the Heisenberg picture so their time dependence

involves the complete Hamiltonian Ĥ of the interacting theory. Likewise, |Ω〉 is the ground

state of Ĥ , i.e. the true physical vacuum of the theory.

In perturbation theory, the correlation functions Fn of the interacting theory are related to

the free theory’s correlation functions

〈0|TΦ̂I(x1) · · · Φ̂I(xn) · · ·more Φ̂I(z1)Φ̂I(z2) · · · |0〉 . (3)

involving additional fields Φ̂I(z1)Φ̂I(z2) · · ·. Note that in eq. (3) the fields are in the interaction

rather than Heisenberg picture, so they evolve with time as free fields according to the free

Hamiltonian Ĥ0. Likewise, |0〉 is the free theory’s vacuum, i.e. the ground state of the free

Hamiltonian Ĥ0 rather than the full Hamiltonian Ĥ.

To work out the relation between (1) and (3), we start by formally relating quantum fields

in the Heisenberg and the interaction pictures,

Φ̂H (x, t) = e+iĤtΦ̂S(x)e
−iĤt = e+iĤte−iĤ0tΦ̂I(x, t)e

+iĤ0te−iĤt. (4)

We may re-state this relation in terms of evolution operators using a formal expression for the

later,

ÛI(t, t0) = e+iĤ0te−iĤ(t−t0)e−iĤ0t0. (5)

Note that this formula applies for both forward and backward evolution, i.e. regardless of
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whether t > t0 or t < t0. In particular,

ÛI(t, 0) = e+iĤ0te−iĤt and ÛI(0, t) = e+iĤte−iĤ0t, (6)

which allows us to re-state eq. (4) as

Φ̂H(x) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, 0). (7)

Consequently,

Φ̂H(x)Φ̂H(y) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0) (8)

because ÛI(x
0, 0)ÛI(0, y

0) = ÛI(x
0, y0), and likewise for n fields

Φ̂H(x1)Φ̂H(x2) · · · Φ̂H(xn) = (9)

= ÛI(0, x
0
1)Φ̂I(x1)ÛI(x

0
1, x

0
2)Φ̂I(x2) · · · ÛI(x0n−1, x

0
n)Φ̂I(xn)ÛI(x

0
n, 0).

Now we need to relate the free vacuum |0〉 and the true physical vacuum |Ω〉. Consider

the state ÛI(0,−T ) |0〉 for a complex T , and take the limit of T → (+1 − iǫ) × ∞. That is,

ReT → +∞, ImT → −∞, but the imaginary part grows slower than the real part. Pictorially,

in the complex T plane,

T

(10)

we go infinitely far to the right at infinitesimally small angle below the real axis.

2



Without loss of generality we assume the free theory has zero vacuum energy, thus Ĥ0 |0〉 = 0

and hence

ÛI(0,−T ) |0〉 = e−iĤT e+iĤ0T |0〉 = e−iĤT |0〉 . (11)

From the interacting theory’s point of view, |0〉 is a superposition of eigenstates |Q〉 of the full

Hamiltonian Ĥ,

|0〉 =
∑

Q

|Q〉 × 〈Q|0〉 =⇒ e−iĤT |0〉 =
∑

Q

|Q〉 × e−iTEQ 〈Q|0〉 (12)

In the T → (+1− iǫ)×∞ limit, the second sum here is dominated by the term with the lowest

EQ, so we look for the lowest energy eigenstate |Q0〉 with the same quantum numbers as |0〉
(otherwise, we would have zero overlap 〈Q0|0〉). Obviously, such |Q0〉 is the physical vacuum

|Ω〉, so

ÛI(0,−T ) |0〉 −−−−−−−−→
T→(+1−iǫ)∞

|Ω〉 × e−iTEΩ 〈Ω|0〉 (13)

and therefore

|Ω〉 = lim
T→(+1−iǫ)∞

ÛI(0,−T ) |0〉 ×
e+iTEΩ

〈Ω|0〉 . (14)

Likewise,

〈Ω| = lim
T→(+1−iǫ)∞

e+iTEΩ

〈0|Ω〉 × 〈0| ÛI(+T, 0) . (15)

Combining eqs. (8), (14), and (15), we may now express the two-point function as

〈Ω| Φ̂H(x)Φ̂H (y) |Ω〉 = lim
T→(+1−iǫ)∞

C(T )× 〈0|Big Product |0〉 (16)

where

C(T ) =
e2iTEΩ

|〈0|Ω〉|2
(17)

is a just a coefficient, and

Big Product = ÛI(+T, 0)ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0)ÛI(0,−T )

= ÛI(+T, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0,−T ).

(18)

For x0 > y0, the last line here is in proper time order, so if we re-order the operators, the
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time-orderer T would put them back where they belong. Thus, using T to keep track of the

operator order, we have

Big Product = T
(

ÛI(+T, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0,−T )

)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T, x
0)ÛI(x

0, y0)ÛI(y
0,−T )

)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T,−T )
)

= T



Φ̂I (x)Φ̂I(y)× exp





−iλ
24

+T
∫

−T

dt

∫

d3z Φ̂4
I(t, z)









(19)

where the last line follows from the Dyson series for the evolution operator

UI(tf , ti) = T-exp



−i
tf
∫

ti

dt V̂I(t)



 = T-exp





−iλ
24

tf
∫

ti

dt

∫

d3z Φ̂4
I(t, z)



 .

Altogether, the two-point correlation function becomes

F2(x, y)
def
= 〈Ω|TΦ̂H(x)Φ̂H(y) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(

Φ̂I(x)Φ̂I(y)× exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉 ,
(20)

where the spacetime integral has ranges

∫

d4z ≡
+T
∫

−T

dz0
∫

whole

space

d3z . (21)

Similarly, the n-point correlation functions can be written as

Fn(x1, . . . , xn) def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉 .

(22)

Note that the coefficient C(T ) is the same for all the correlations functions (for any n);

it’s related to the vacuum energy shift according to eq. (17). In particular, for n = 0 the
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F0 = 〈Ω|Ω〉 = 1, but it’s also given by eq. (22), hence

lim
T→(+1−iǫ)∞

C(T )× 〈0|T
(

exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉 = 1. (23)

This allows us to eliminate the C(T ) factors from eqs. (22) by taking ratios of the free-theory

correlation functions,

Fn(x1, . . . , xn) = lim
T

〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉

〈0|T
(

exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉
. (24)

The limit here is T → (+1− iǫ)×∞, and the T dependence under the limit is implicit in the

ranges of the spacetime integrals, cf. eq. (21).

In perturbation theory, the vacuum sandwiches in the numerator and the denominator of

eq. (24) can be expanded into sums of Feynman diagrams. Indeed, expanding the numerator

in a power series in λ, we obtain

〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉 =

=

∞
∑

N=0

(−iλ)N
(4!)N N !

∫

d4z1 · · ·
∫

d4zN 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4
I(z1) · · · Φ̂4

I(zN ) |0〉
(25)

where each sub-sandwich 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4
I(z1) · · · Φ̂4

I(zN ) |0〉 expands into a big sum

of products of 4N+n
2 Feynman propagators GF (xi − xj), GF (xi − zj), or GF (zi − zj). We have

gone through expansion back in November — here are my notes — so let me simply summarize

the result in terms of the Feynman rules for the correlation functions:

⋆ A generic Feynman diagram for the n-point correlation function has n external ver-

tices x1, . . . , xn or valence = 1 plus some number N = 0, 1, 2, 3, . . . of internal vertices

z1, . . . , ZN of valence = 4. On the other hand, it has no external lines but only the

internal lines between the vertices. Here is an example diagram with 2 external vertices,
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2 internal vertices, and 5 internal lines:

(26)

• To evaluate a diagram in coordinate space, first multiply the usual factors:

∗ The free propagator GF (zi− zj) for a line connecting vertices internal zi and zj , and

likewise for lines connecting an internal vertex zi to an external vertex xj , or two

external vertices xi and xj .

∗ (−iλ) factor for each internal vertex.

∗ The combinatorial factor 1/#symmetries of the diagram (including the trivial sym-

metry).

• Second, integrate
∫

d4z over each internal vertex location; the integration range is as in

eq. (21). But do not integrate over the external vertices — their location’s x1, . . . , xn are

the arguments of the n-point correlation function Fn(x1, . . . , xn).

• To calculate the numerator of eq. (24) to order λNmax , sum over all diagrams with n

external vertices, N ≤ Nmax internal vertices, and any pattern of lines respecting the

valences of all the vertices.

At this point, we are summing over all kinds of diagrams, connected or disconnected, and

even the vacuum bubbles are allowed. However, similar to what we had back in November, the

vacuum bubbles can be factored out:

∑

(all diagrams) =
∑

(

diagrams without

vacuum bubbles

)

×
∑

(

vacuum bubbles

without external vertices

)

. (27)

Moreover, the vacuum bubble factor here is the same for all the free-theory vacuum sandwiches

〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉
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in the numerators of eqs. (24) for all the correlation functions, and also in the n = 0 sandwich

〈0|T
(

exp

(−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉 =
∑

(

vacuum bubbles

without external vertices

)

(28)

in the all the denominators. This means that the vacuum bubbles simply cancel out from the

correlation functions! In other words,

Fn(x1, . . . , xn) =
∑







Feynman diagrams with

n external vertices x1, . . . xn

and without vacuum bubbles






. (29)

Besides reducing the number of diagrams we need to calculate, the cancellation of the

vacuum bubbles leads to another simplification: Instead of evaluating each diagram for a finite

T , taking the ratio of two sums of diagrams, and only then taking the T → (+1 − iǫ)∞ limit,

we may now take that limit directly for each diagram . In practice, this means integrating

each
∫

d4zi over the whole Minkowski spacetime instead of a limited time range from −T to

+T as in eq. (21). Consequently, when we Fourier transform the Feynman rules from the

coordinate space to the momentum space, we end up with the usual momentum-conservation

factors (2π)4δ(4)(±q±1 q2 ± q3 ± q4) at each internal vertex instead of something much more

complicated.

So here are the momentum-space Feynman rules for the correlation functions:

• Since all the lines are internal, assign a variable momentum qµi to each line and specify

the direction of this momentum flow (from which vertex to which vertex).

∗ Each line carries a propagator
i

q2 −m2 + i0
.

∗ Each external vertex x carries a factor e+iqx or e−iqx, depending on whether the momen-

tum q flows into or out from the vertex.

∗ Each internal vertex carries factor (−iλ)× (2π)4δ(4)(±q±1 q2 ± q3 ± q4).

∗ Overall combinatorial factor 1/#symmetries for the whole diagram.

• Multiply all these factors together, then integrate over all the momenta qµi .
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For example, the diagram (26) evaluates to

F2(x, y) ⊃ 1

6

∫

d4q1
(2π)4

· · ·
∫

d4q5
(2π)4

5
∏

i=1

i

q2i −m2 + iǫ
× e−iq1x × e+iq2y×

× (−iλ)(2π)4δ(4)(q1 − q3 − q4 − q5)×

× (−iλ)(2π)4δ(4)(q3 + q4 + q5 − q2)

=
−iλ2
6

∫

d4q1
(2π)4

e−iq1(x−y) ×
(

1

q21 −m2 + iǫ

)2

×

×
∫∫

d4q3 d
4q4

(2π)8
1

q23 −m2 + iǫ
× 1

q24 −m2 + iǫ
×

× 1

(q5 = q1 − q3 − q4)2 −m2 + iǫ

(30)

Note: as defined in eq. (1), the correlation functions Fn(x1, . . . , xn) obtain by summing

all Feynman diagrams without vacuum bubbles, cf. eq. (29). Both the connected and the

disconnected diagrams are included, as long as each connected part of a disconnected diagram

has some external vertices. However, the disconnected diagrams’ contributions can be re-

summed in terms of correlation functions of fewer fields. Indeed, let’s define the connected

correlation functions

F conn
n (x1, . . . , xn) =

∑

(

connected Feynman diagrams

with n external vertices

)

. (31)

Then the original Fn functions can be obtained from these via cluster expansion:

F2(x, y) = F conn
2 (x, y),

F4(x, y, x, w) = F conn
4 (x, y, z, w) + F conn

2 (x, y)×F conn
2 (z, w)

+ F conn
2 (x, z)×F conn

2 (y, w) + F conn
2 (x, w)× F conn

2 (y, z),

F6(x, y, x, u, v, w) = F conn
6 (x, y, z, u, v, w)

+
(

F conn
2 (x, y)×F conn

4 (z, u, v, w) + permutations
)

+
(

F conn
2 (x, y)×F conn

2 (z, u)×F conn
2 (v, w) + permutations

)

,

etc., etc.

(32)

The connected 4-point, 6-point, etc., correlation functions are related to the scattering ampli-

tudes via the LSZ reduction formula — named after Harry Lehmann, Kurt Symanzik, and
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Wolfhart Zimmermann, — see $7.2 of the Peskin and Schroeder textbook for the details. I

shall explain the LSZ reduction formula later in class.

The 2–Point Correlation Function

Meanwhile, let us focus on the 2-point correlation function F2(x − y), which is related to

the renormalization of the particle mass and the strength of the quantum field. For x0 > y0 we

have

F2(x− y)
def
= 〈Ω|TΦ̂H(x)Φ̂H (y) |Ω〉 = 〈Ω| Φ̂H(x)Φ̂H(y) |Ω〉

=
∑

|Ψ〉

〈Ω| Φ̂H(x) |Ψ〉 × 〈Ψ| Φ̂H(y) |Ω〉 (33)

where the sum is over all the quantum states |Ψ〉 of the theory. Or rather, over all quantum

states which can be created by the action of the quantum field Φ̂(y) on the vacuum state. In

the free theory, such states would be limited to the one-particle states with different momenta,

but the interacting field Φ̂H(y) may also create a three-particle state, or a five-particle state,

etc., etc. In a more general theory, the quantum states |Ψ〉 which could be created by the

action of some quantum field ϕ̂(y) on the vacuum include all the multi-particle states which

have the same net conserved quantum numbers as a single naive quantum of the field ϕ̂(y). For

example, in QED, the states Âµ(y) |Ω〉 created by the EM field acting on the vacuum include

the one-photon states, the three-photon states, etc., but also the electron-positron states —

including both the un-bound two-particle states and the hydrogen atom-like bound states, —

as well as the states including one or more e−e+ pairs and several photons. In other words, all

the quantum states which can get mixed with a single-photon state by the QED interactions.

For simplicity, let me keep the states |Ψ〉 in eq. (33) completely generic. As to their quantum

numbers, let me separate the net energy-momentum pµ of all the particles involved from all

the other quantum numbers which I’ll denote by the lower-case ψ, thus |Ψ〉 = |ψ, pµ〉. Note:

for the single-particle and bound states, the spectrum of ψ is discrete, while for the un-bound

multi-particle states the spectrum of ψ is continuous since ψ includes the relative velocities of

the several particles. As to the spectrum of the net momentum pµ, it spans the positive-energy

9



mass shell for the mass which depends on ψ, thus

any p, p0 = +
√

p2 +M2(ψ) (34)

where M(ψ) is the invariant mass of the state |ψ; p〉. Altogether, in terms of the |Ψ〉 = |ψ; p〉
eq. (33) becomes

F2(x− y) =
∑

ψ

∫

d3p

(2π)3
1

2E(p,M(ψ))
× 〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 . (35)

Next, consider the x–dependence of the matrix element 〈Ω| Φ̂H (x) |ψ, p〉 and the y–depen-

dence of the 〈ψ, p| Φ̂H(y) |Ω〉. The quantum field theory has transpational symmetry in all 4

dimensions of spacetime, and the net energy-momentum operator P̂ µ is the generator of this

symmetry. In the Heisenberg picture of the theory, this means

Φ̂H(x+ a) = exp(+iaµP̂
µ) Φ̂H(x) exp(−iaµP̂ µ) (36)

and in particular

Φ̂H(x) = exp(+ixµP̂
µ) Φ̂H(0) exp(−ixµP̂ µ). (37)

At the same time, the states 〈Ω| and |ψ, p〉 are eigenstates of the net energy-momentum oper-

ators: the vacuum 〈Ω| has P = 0 while the state |ψ, p〉 has P = p. Consequently,

〈ω| exp(ixµP̂ µ) = 〈Ω| while exp(−ixµP̂ µ) |ψ, p〉 = e−ixµp
µ × |ψ, p〉 , (38)

and therefore

〈Ω| Φ̂H(x) |ψ, p〉 = 〈Ω| exp(ixµP̂ µ) Φ̂H(0) exp(−ixµP̂ µ) |ψ, p〉 = e−ixµp
µ × 〈Ω| Φ̂H(0) |ψ, p〉 .

(39)

Similarly,

〈ψ, p| Φ̂H(y) |Ω〉 = 〈ψ, p| exp(iyµP̂ µ) Φ̂H(0) exp(−iyµP̂ µ) |Ω〉 = e+iyµp
µ × 〈ψ, p| Φ̂H(0) |Ω〉 .

(40)
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Combining these two formulae, we have

〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 = e−ipx+ipy × 〈Ω| Φ̂H(0) |ψ, p〉 〈ψ, p| Φ̂H(0) |Ω〉

= e−ip(x−y) ×
∣

∣

∣
〈ψ, p| Φ̂H(0) |Ω〉

∣

∣

∣

2 (41)

where only the e−ip(x−y) factor depends on the x and y coordinates. Moreover, it’s the only

factor depending on the total momentum p! Indeed, the state Φ̂H(0) |Ω〉 is invariant under

orthochronous Lorentz symmetries, hence the matrix element

〈ψ, p| Φ̂H(0) |Ω〉 is the same for all p ∈ the mass shell. (42)

Renaming this p-independent matrix element as simply 〈ψ| Φ̂H(0) |Ω〉, we have

〈Ω| Φ̂H(x) |ψ, p〉 × 〈ψ, p| Φ̂H(y) |Ω〉 =
∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
× e−ip(x−y). (43)

Consequently, eq. (35) for the two-point correlation function becomes

F2(x− y) =
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×

∫

d3p

(2π)3
1

2p0
e−ip(x−y)

∣

∣

∣

∣

p0=+
√

p2+M2(ψ)

=
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×D(x− y;M(ψ)).

(44)

Now remember that eq. (44) follows from eq. (33), which obtains only for x0 > y0. In the

opposite case of x0 < y0, we have

F2(x− y) = 〈Ω|TΦ̂H(x)Φ̂H(y) |Ω〉 = 〈Ω| Φ̂H(y)Φ̂H(x) |Ω〉

=
∑

ψ

∫

d3p

(2π)3
1

2E(p,M(ψ))
〈Ω| Φ̂H(y) |ψ, p〉 × 〈ψ, p| Φ̂H(x) |Ω〉 ,

(45)

similar to eq. (35) but with x and y exchanging thjeir roles. Consequently, proceeding exactly
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as above, we obtain

F2(x− y) =
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×D(y − x;M(ψ)). (46)

Altogether, for any time order of the x0 and the y0, we have

F2(x− y) =
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×

{

D(x− y;M(ψ)) for x0 > y0,

D(y − x;M(ψ)) for x0 < y0,

=
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×GF (x− y;M(ψ))

=
∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
×

∫

d4p

(2π)4
ie−ip(x−y)

p2 −M2(ψ) + iǫ
.

(47)

Eq. (47) is usually written as the Källén–Lehmann spectral representation:

F2(x− y) =

∞
∫

0

dm2

2π
ρ(m2)×

∫

d4p

(2π)4
ie−ip(x−y)

p2 −m2 + iǫ
. (48)

where

ρ(m2)
def
=

∑

ψ

∣

∣

∣
〈ψ| Φ̂H(0) |Ω〉

∣

∣

∣

2
× (2π)δ(M2(ψ)−m2) (49)

is the spectral density function. Here are some of its key features:

• In any QFT, for any quantum field, the spectral density function is real and non-negative,

ρ(m2) ≥ 0 at all m2.

• In the free field theory, ρ(m2) = 2πδ(m2 −M2) where M is the particle’s mass.
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• In the interacting λΦ4 theory, the spectral density function has both a delta-spike at

m2 =M2 and a smooth continuum above the 3-particle threshold,

m2

ρ

M2 (3M)2

⋆ Note: the M2 position of the delta-spike is the mass2 of the physical particle rather

than the bare mass2 in the Feynman rules of the perturbation theory. Likewise, the

continuum begins at (3M)2, which is the threshold for the mass2 for the physical

3-particle states.

• In a general quantum field theory, the spectral density functions get contributions from

several kind of states: single particle, bound states of several particles, unbound states,

unstable resonances, etc., etc. The single-particle states and the bound states give rise

to the delta-spikes of the spectral density function, the un-bound multi-particle states

give rise to the continuum starting at the threshold (the minimal invariant mass2 of the

unbond state), while the resonances give rise to narrow peaks on top of the continuum.

Schematically,

m2

ρ

1 particle bound
states

threshold

continuum of unbound states

resonance
narrow

13



Analytic Behavior

Now let’s translate all these features of the spectral density function ρ(m2) into the analytic

behavior of the two-point function F2(x− y), or rather of its Fourier transform

F2(p) =

∫

d4x eipµx
µ F2(x− 0) =

∞
∫

0

dm2

2π
ρ(m2)× i

p2 −m2 + iǫ
. (50)

In the λΦ4 theory, the one-particle state contributes the delta-spike to the spectral density

function, while the multi-particle unbound states give rise to the smooth continuum, thus

ρ(m2) = Z × 2πδ(m2 −M2
particle) + smooth, (51)

where

Z =
∣

∣

∣
〈1 particle| Φ̂H(0) |Ω〉

∣

∣

∣

2
> 0. (52)

In other words,
√
Z is the strength with which the quantum field Φ̂ creates single particles from

the vacuum. In the free theory Z = 1 but in the interacting theory it is subject to quantum

corrections.

Plugging the delta-spike (51) into eq. (50) for the two-point function, we immedietaley see

that it has a pole at p2 =M2
particle with residue Z,

F2(p
2) =

iZ

p2 −M2
particle + iǫ

+ smooth(p2). (53)

Conversely, if we find — from the perturbation theory, or by any other means — that the

two-point function has a pole at p2 = M2 with residue Z, then the spectral density function

has a delta-splike just like in eq. (51), which means that the pole position M2 is precisely the

physical mass of the particle!

In perturbation theory, the Feynman vertices use the bare coupling λbare which is different

from the physical coupling λphys of the theory; likewise, the Feynman propagators use the bare

mass mbare wich is different from the physical mass of the particle. To relate the bare mass to

14



the physical mass, we should use the perturbation theory to calculate the two-point correlation

function F2(p
2). That two-point function should have a pole, generally at M2

pole 6= m2
bare. It

is that pole mass2 M2
pole which should be identified with the physical mass2 of the particle! In

other words, we should get the pole mass2 as a perturbative expansion

M2
pole = m2

bare + loop corrections = f(m2
bare, λbare,ΛUV ), (54)

and then we should identify M2
pole =M2

particle and solve the equation

f(m2
bare; other stuff) = M2

particle (55)

for the m2
bare. Next week, I shall explain how this works in some detail.

Meanwhile, let’s consider the un-bound states contribution to the two-point function. In

the integral

F2(p
2) =

∞
∫

0

dm2

2π
ρ(m2)× i

p2 −m2 + iǫ
, (50)

a smooth positive ρ(m2) above the threshold m2
thr = 9M2 gives rise to the branch cut running

from the threshold to +∞ along the real axis. Indeed, for p2 > the threshold so that ρ(m2 = p2)

is positive and smooth, we have

F2(p
2 + iǫ) − F2(p

2 − iǫ) =
1

2πi

∞
∫

0

dm2 ρ(m2)

m2 − p2 − iǫ
− 1

2πi

∞
∫

0

dm2 ρ(m2)

m2 − p2 + iǫ

=
1

2πi

∮

circle

around p

dm2 ρ(m2)

m2 − p2
= ρ(p2).

(56)

Thus, the 2-point function has a discontinuity across the real axis between p2 + iǫ and p2 − iǫ,
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which means a branch cut on its Riemann surface:

pole branch cut
Re(p2)

Im(p2)

F2(p
2)

Let’s take a closer look at the real axis of this Riemann surface. For the real and negative

(spacelike) p2, the two-point function, or rather the

iF2(p
2) =

+infty
∫

0

dm2

2π

ρ(m2)

m2 − p2
(57)

is real, positive, and single-valued. As we continue to the positive (timelike) p2 but stay below

the threshold, the iF2(p
2) remain real and single-valued. But once we cross over the threshold,

the integral (57) includes the singularity at m2 = p2, which gives rise to the branch cut. In this

regime,

(above the threshold) iF2(p
2 ± iǫ) = real ± i

ρ(p2)

2
. (58)

So what should we do for real p2 above the threshold? The iǫ in the denominator under

the integral (50) gives the answer
⋆
: we should shift such real p2 upward in the complex plane,

⋆ The p2−m2+iǫ in the denominator of eq. (50) stems from the similar denominator in the Källén–Lehmann
representation (48), which in turn comes from the Feynman propagator GF (x − y;M(ψ)) for the scalar
field, cf. eq. (47).
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p2 → p2 + iǫ, and avaluate the 2-point function for p2 + iǫ. In other words, the physical ‘bank’

of the branch cut is the upper bank.

More generally, the Riemann surface of the 2-point function F2(p
2) has the physical sheet

and an infinite series of the un-physical sheets. The physical sheet begins on the upper bank of

the branch cut and extends counterclockwise to the negative real axis and back to the positive

axis. On this physical sheet, the F2(p
2) no off-axis poles. Instead, all the poles are at real

positive p2 and correspond to physical stable particles (or bound states).

However, the two-point function may have additional off-axis poles on the un-physical

sheet of the Riemann surface beyond the branch cut. Such poles — if any — corresponds to

the unstable particles or resonances. Specifically:

• First, we define the F(p2)
def
= F2(p

2 + iǫ) along the upper — physical — bank of the

branch cut.

• Second, we analytically continue this function to complex p2. For positive Im(p2) this

continuation takes us to the physical sheet of the Riemann surface, while for the negative

Im(p2) it takes us to the unphysical sheet below the branch cut.

• It is on this un-physical sheet that the two-point function may have an off-axis pole, or

perhaps several poles. For example, suppose it has a pole at p2 =M2− iMΓ. Mathemat-

ically, this means we start with p2 = M2 + iǫ, analytically continue from positive Im p2

to negative Im p2, and only then hit the pole at Im p2 = −MΓ.

• Suppose Γ is small so the pole on the un-physical sheet is close to the real axis. Then for

the real p2 near M2, the two-point function is dominated by that pole,

for p2 ≈ M2, F(p2) =
iZ

p2 −M2 + iMΓ
+ smooth(p2). (59)

This is the Breit–Wigner resonance.

• Physically, such a resonance corresponds to an un-stable particle. By the optical theorem,

the rensonance’s width Γ equals to the net decay rate of the unstable particle, including

alll possibel decay products. In other words, 1/Γ is the average lifetime of the unstable

particle.
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