
QFT Dimensional Analysis

In the h̄ = c = 1 units, all quantities are measured in units of energy to some power.

For example [m] = [pµ] = E+1 while [xµ] = E−1, where [m] stands for the dimensionality of

the mass rather than the mass itself, and ditto for the [pµ], [xµ], etc. The action

S =

∫
d4xL

is dimensionless (in h̄ 6= 1 units, [S] = h̄), so the Lagrangian of a 4D field theory has

dimensionality [L] = E+4.

Dimensionalities of the quantum fields are subject to quantum corrections,

[field] = E∆, ∆ = ∆0 + O(coupling) + O(coupling2) + · · · , (1)

where ∆0 is called the canonical dimension — it’s the dimensionality of the field in question

in the semiclassical limit. The canonical dimensions of different fields follow from their free

Lagrangians. For example, a scalar field Φ(x) has

Lfree = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2, (2)

so [L] = E+4,
[
m2
]

= E+2, and [∂µ] = E+1 imply [Φ] = E+1. Likewise, the EM field has

LEM
free = −1

4FµνF
µν =⇒ [Fµν ] = E+2, (3)

and since Fµν = ∂µAν − ∂νAµ, the Aν(x) field has dimension

[Aν ] = [Fµν ]
/

[∂µ] = E+1. (4)

The massive vector fields also have [Aν ] = E+1, so that both terms in

Lfree = −1
4FµνF

µν + 1
2m

2AνA
ν (5)

have dimensions
[
F 2
]

=
[
m2A2

]
= E+4.
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In fact, all the bosonic fields in 4D spacetime have canonical dimensions E+1 because

their kinetic terms are quadratic in ∂µ(field). On the other hand, the fermionic fields like

the Dirac field Ψ(x) have dimensionality [Ψ] = E+3/2. Indeed, the kinetic terms in the free

Dirac Lagrangian

Lfree = Ψ(iγµ∂µ −m)Ψ (6)

involve two fermionic fields Ψ and Ψ but only one derivative ∂µ. Consequently, [L] = E+4

implies
[
ΨΨ
]

= E+3 and hence [Ψ] =
[
Ψ
]

= E+3/2. Similarly, all other types of fermionic

fields in 4D have canonical dimension E+3/2.

In QFTs in other spacetime dimensions d 6= 4, similar arguments show that the bosonic

fields such as scalars and vectors have canonical dimension

[Φ] = [Aν ] = E+(d−2)/2 (7)

while the fermionic fields have canonical dimension

[Ψ] = E+(d−1)/2. (8)

In perturbation theory, dimensionality of coupling parameters such as λ in λΦ4 theory or

e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory

with Lagrangian

L = 1
2∂µΦ ∂µΦ − 1

2m
2Φ2 −

∑
n≥3

Cn
n!

Φn, (9)

the coupling Cn of the Φn term has dimensionality

[Cn] = [L]
/

[Φ]n = E4−n. (10)

In particular, the cubic coupling C3 has positive energy dimension E+1, the quartic cou-

pling λ = C4 is dimensionless, while all the higher-power couplings have negative energy

dimensions Enegative.
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Now consider a theory with a single coupling g of dimensionality [g] = E∆. The pertur-

bation theory amouns to expanding the scattering amplitudes in powers of g,

M(momenta, g) =
∑
N

gN × FN (momenta). (11)

All contributions to the amplitude have the same dimensionality [M] = EC , hence

[FN (momenta)] = EC−N∆, (12)

so for scattering at an overall energy scale E

FN (momenta) = EC−N∆ × fN (momenta/E). (13)

Consequently

M(momenta, g) = EC ×
∑
N

( g

E∆

)N
× FN (momenta/E), (14)

a series in powers of (g/E∆) rather than simply powers of g. This power series is asymptotic

rather than convergent, so it makes sense only when the expansion parameter is small,

g

E∆
� 1. (15)

For a dimensionless coupling g this condition is simply g � 1, but for ∆ 6= 0 the situation

is more complicated.

For couplings of positive dimensionality ∆ > 0, the expansion parameter (15) is always

small for for high-energy processes with E � g1/∆. But for low energies E <∼ g1/∆, the

expansion parameter becomes large and the perturbation theory breaks down. This is a

major problem for theories with ∆ > 0 couplings of massless particles. However, if all the

particles participating in a ∆ > 0 coupling are massive, then all processes have energies

E >∼Mlightest, and this makes couplings with ∆ > 0 OK as long as

g � M∆
lightest . (16)

Couplings of negative dimensionality ∆ < 0 have the opposite problem: The expansion

parameter (15) is small at low energies but becomes large at high energies E >∼ g−1/∆.
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Beyond the maximal energy

Emax ∼ g1/(−∆), (17)

the perturbation theory breaks down and we may no longer compute the S–matrix elements

M using any finite number of Feynman diagrams.

Worse, in Feynman diagrams with loops one must worry not only about momenta kµ

of the incoming and outgoing particles but also about momenta qµ of the internal lines.

Basically, an L–loop diagram contributing to the N th term in the expansion (14) produces

something like

gN×
∫
d4LqFN (q, k,m) where [FN ] = E−N∆−4L+C , C = dim[M] = const. (18)

For very large loop momenta q � k,m, dimensionality implies FN ∝ qC−N∆−4L, so for

C − N∆ ≥ 0, the integral (18) diverges as q → ∞. Moreover, the degree of divergence

increases with the order N of the perturbation theory, so any scattering amplitude becomes

divergent at high orders. Therefore, field theories with ∆ < 0 couplings do not work as

complete theories.

However, theories with ∆ < 0 may be used as approximate effective theories (without

the divergent loop graphs) for the low-energy processes with E <∼ Λ for some Λ < g−1/∆.

For example, the Fermi theory of weak interactions

Lint =
GF√

2

∑
appropriate
fermions

Ψγµ(1− γ5)Ψ×Ψγµ(1− γ5)Ψ (19)

has coupling GF of dimension [GG] = E−2; its value is GF ≈ 1.17 · 10−5 GeV−2. This is

a good effective theory for low-energy weak interactions, but it cannot be used for energies

E >∼ 1/
√
GF ∼ 300 GeV, not even theoretically. In real life, the Fermi theory works only

for E � MW ∼ 80 GeV; at higher energies, one should use the complete SU(2) × U(1)

electroweak theory instead of the Fermi theory.

Similar to the Fermi theory, most effective theories with ∆ < 0 couplings are low-energy

limits of more complicated theories with extra heavy particles of masses M <∼ g−1/∆.

4



On the other hand, a UV-complete quantum field theory which may be extrapolated to

arbitrarily high energies cannot have any negative-dimensionality couplings. This is a major

restriction because in d = 4 dimensions there are only a few coupling types with ∆ ≥ 0. To

see that, note that any coupling involves 3 or more fields, but the more fields it involves, the

less is its dimensionality. Specifically, a coupling involving b bosonic fields (scalar or vector),

f fermionic fields, and δ derivatives ∂µ has dimensionality

∆ = 4 − b − 3
2 f − δ. (20)

Consequently, there is only one ∆ > 0 coupling type — the boson3 without derivatives,

— and only a few types of couplings with ∆ = 0, namely boson4, boson × fermion2, and

boson2 × ∂boson. All other coupling types have ∆ < 0 and are not allowed (except in

effective theories).

In terms of more specific field and coupling types, here is the complete list of the allowed

couplings in 4D.

1. Scalar couplings

− κ
3!

Φ3 and − λ

4!
Φ4. (21)

Note: the higher powers Φ5, Φ6, etc., are not allowed because the couplings would

have ∆ < 0.

2. Gauge couplings of vectors to charged scalars

−iqAµ × (Φ∗∂µΦ − Φ∂µΦ∗) + q2AµA
µ × Φ∗Φ ⊂ DµΦ∗DµΦ, (22)

or for non-abelian gauge symmetries

−igAaµ ×
(

Φ†T a∂µΦ − ∂µΦ†T aΦ
)

+ g2AaµA
bµ × Φ†T aT bΦ ⊂ DµΦ†DµΦ. (23)

3. Non-abelian gauge couplings between the vector fields

−gfabc(∂µAaν)AµbAνc − g2

4
fabcfadeAbµA

c
νA

µdAνe ⊂ −1

4
F aµνF

µνa. (24)

5



4. Gauge couplings of vectors to charged fermions,

−qAµ ×ΨγµΨ or − gAaµ ×ΨγµT
aΨ ⊂ Ψ(iγµD

µ)Ψ. (25)

If the fermions are massless and chiral, we may also have

−gAaµ ×Ψγµ
1∓ γ5

2
T aΨ, (26)

or in the Weyl fermion language

−gAaµ × ψ
†
Lσ̄µT

aψL or − gAaµ × ψ
†
RσµT

aψR .

5. Yukawa couplings of scalars to fermions,

−yΦ×ΨΨ or − iyΦ×Ψγ5Ψ. (27)

If parity is conserved, in the first terms Φ should be a true scalar, and in the second

term a pseudo-scalar.

— And this is it! No other coupling types are allowed in 4D field theories that remain

valid to arbitrarily high energies.

In other spacetime dimensions d 6= 3+1, a coupling involving b bosonic fields, f fermionic

fields, and δ derivatives has dimensionality

∆ = d − b× d− 2

2
− f × d− 1

2
− δ = b + 1

2f − δ − b+ f − 2

2
× d. (28)

Since all interactions involve three or more fields, thus b+ f ≥ 3, the dimensionality of any

particular coupling always decreases with d. Consequently, there are more perturbatively-

allowed couplings with ∆ ≥ 0 in lower dimensions d = 2 + 1 or d = 1 + 1 but fewer allowed

couplings in higher dimensions d > 3 + 1. In particular,

• In d ≥ 6 + 1 dimensions all couplings have ∆ < 0 and there are no UV-complete

quantum field theories, or at least no perturbative UV-complete quantum field theories.
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• In d = 5 + 1 dimensions there is a unique ∆ = 0 coupling (µ/6)Φ3, while all the other

couplings have ∆ < 0. Consequently, the only perturbative UV-complete theories are

scalar theories with cubic potentials,

L =
∑
a

(
1
2(∂µΦa)

2 − 1
2m

2
aΦ

2
a

)
− 1

6

∑
a,b,c

µabcΦaΦbΦc . (29)

However, while such theories are perturbatively OK, they do not have stable vacua.

Indeed, a cubic potential is un-bounded from below — it goes to −∞ along half of the

directions in the field space — so even if it has a local minimum at Φa = 0, it’s not

the global minimum. Consequently, in the quantum theory, the naive vacuum with

〈Φa〉 = 0 would decay by tunneling to a run-away state with 〈Φa〉 → ±∞.

• In d = 4 + 1 dimensions, the (µ/6)Φ3 coupling has positive ∆ = +1
2 while all the other

couplings have negative energy dimensions. Again, the only perturbative UV-complete

theories are scalar theories with cubic potentials, but they do not have stable vacua.

? The bottom line is, in d > 3 + 1 dimensions, all quantum field theories are effective

theories for low-enough energies. At higher energies, a different kind of theory must

take over — perhaps a theory in a discrete space, perhaps a string theory, or maybe

something more exotic.

On the other hand, in lower dimensions d = 2 + 1 or d = 1 + 1 there are many more

allowed couplings with ∆ ≥ 0. In particular, in d = 2 + 1 dimensions the allowed couplings

include:

◦ Scalar couplings (Cn/n!)Φn up to n = 6;

◦ Gauge and Yukawa couplings like in 4D;

◦ Yukawa-like couplings ỹΦ2 ×ΨΨ involving 2 scalars;

∗ Scalar-dependent gauge couplings, Chern–Simons couplings of non-abelian gauge fields

to each other, and some other exotic couplings, never mind the details.

Finally, in d = 1 + 1 dimensions there is an infinite number of allowed ∆ ≥ 0 couplings.

Indeed, for d = 1+1 the bosonic fields have energy dimension E0, so ∆ of a coupling does not

depend on the number b of bosonic fields it involves but only on the numbers of derivatives
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and fermionic fields,

∆ = 2− δ − 1
2f. (30)

Consequently, all scalar potentials V (Φ) — including CnΦn terms for any n, and even the

non-polynomial potentials — have ∆ = +2, so any V (Φ) is allowed in 2D. Likewise, all

Yukawa-like couplings ΦnΨΨ have ∆ = +1, so we may have terms like yIJ(Φ) × Ψ
I
ΨJ for

any functions yIJ(Φ).

At the ∆ = 0 level, we are allowed field-dependent kinetic terms

Lkin = 1
2gij(φ)× ∂µφi ∂µφj (31)

with any Riemannian metrics gij(φ) for the non-linear scalar field space, as well as a whole

bunch of fermionic terms with arbitrary scalar-dependent coefficients,

LΨ ⊃ 1
4gIJ(Φ)×Ψ

I
γµ
(
i
→
∂µ−i

←
∂µ

)
ΨJ + ΓIJk(Φ)× ∂µΦk ×Ψ

I
γµΨJ

+ 1
2RIJKL(Φ)×Ψ

I
γµΨJ ×Ψ

K
γµΨL.

(32)

In addition, there are gauge couplings with arbitrary scalar-dependent ggauge(Φ), chiral cou-

plings to Weyl or Majorana-Weyl fermions, etc., etc. In the String Theory class, you will

encounter many of these couplings in the context of the 2D field theory on the world sheet

of the string.
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