
Functional Quantization of the Electromagnetic Field

In the functional quantization (path integral) formalism, the propagator of a free field

follows from coupling a classical field to a source and then taking the functional integral for

the partition function. But for the gauge fields — like the electromagnetic field Aµ(x) —

this procedure must be modified to factor out the local redundancy due to gauge transforms

Aµ(x) → Aµ(x)− ∂µΛ(x). Otherwise, the naive functional integral

Znaive[J ] =

∫∫∫
D[Aµ(x)] exp

(
−

∫
d4xe

(
1
4F

2
µν − JµAµ

))
(1)

does not converge in any sense unless the source Jµ(x) happens to be a conserved current,

∂µJµ = 0. Indeed, the naive functional integral (1) over the vector field Aµ(x) includes

integration over both the physical and the gauge-redundant degrees of freedom,

∫∫∫
D[Aµ(x)] =

∫∫∫
D[physically distinct Aµ(x)]

∫∫∫
D[Λ(x)]. (2)

At the same time, for ∂µJµ 6= 0 the Euclidean action is not gauge invariant but varies by

δSE [Aµ, Jµ] =

∫
d4xEΛ(x)× ∂µJµ(x), (3)

which makes the integral

∫∫∫
D[Λ(x)] exp

(
−SE [Aµ − ∂µΛ, Jm]

)
(4)

badly divergent, and consequently the naive functional integral (1) is also badly divergent.

Moreover, in the integral (1) we integrate over both physical and unphysical degrees

of freedom. Note that the gauge transforms of the EM potentials Aµ(x) are redundancies

rather than local symmetries: Instead of relating similar but distinct field configurations,

they relate different parametrizations of the same physics. Consequently, in the properly

defined functional integral for the EM fields we should integrate only over the physically

distinct potentials Aµ(x). That is, once we integrate over some potential Aµ(x), we should

not integrate over any of the gauge-equivalent potentials Aµ(x)− ∂µΛ(x).
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Mathematically, we need to somehow factorize the functional integral over all the Aµ(x)

into an integral over the gauge-inequivalent potentials only and the integral over the redun-

dant degrees of freedom parametrized by the Λ(x). In these notes, I explain the Fadde’ev–

Popov formalism for achieving such a factorization

My starting point is gauge-fixing: Start with a generic EM field Aµ(x), and replace it

with a physically equivalent field AΛ(x) = Aµ(x) − ∂µΛ(x) which obeys some gauge-fixing

condition G(AΛ
µ (x)) = 0, for example:

• The Coulomb gauge ∇ ·AΛ(x) = 0 at all x.

• The axial gauge AΛ
3 (x) = 0 at all x.

• The Landau gauge ∂µA
Λ
µ (x) = 0 at all x.

In general, for any Aµ(x) there is a unique (or as good as unique) physically equivalent field

AΛ
µ (x) which obeys G(AΛ

µ ) ≡ 0, so naively we may replace the functional integral over the

original EM field Aµ(x) with

∫∫∫
D[Aµ(x)] −→

∫∫∫
D[Aµ(x)]

∫∫∫
D[Λ(x)]∆[G(AΛ

µ)], (5)

where ∆ is the functional equivalent of the δ-function — the ∆[G(AΛ
µ )] vanishes unless

G(AΛ
µ) = 0 at all x.

However, one must be careful about properly normalizing a δ-function of a function.

Indeed, even in a calculus of a single variable α,

∫
dα δ(g(α))× f(α) =

f(α0)

g′(α0)
where g(α0) = 0. (6)

In other words, if we want to evaluate a function f(α) at the point α0 where another function

g(α) happens to vanish, we cannot simply take an integral of f(α)× δ(g(α)) as on the LHS

above but we must accompany the δ-function with a derivative of g,

f
(
α0 where g(α) = 0

)
=

∫
dα f(α)× δ(g(α))g′(α). (7)

Similarly, to fix N variables (α1, . . . , αN ) using N independent constraints gi(α1, . . . , αN ) =

0, and then to evaluate a function f(~α) at a point ~α0 where all the constraints are satisfied,
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we use

f(~α0) =

∫
dN~α f(~α)×

∏

i

δ(gi(~α))× det

(
∂gi
∂αj

)
(8)

— the N -dimensional δ-function must be accompanied by the Jacobian det(∂gi/∂αj).

Likewise, the functional δ-function ∆[G(Λ)] must be accompanied by the functional

determinant det(δG/δΛ). In particular, in the context of the functional integral (5) over the

EM fields Aµ(x), the proper integral over the gauge variables Λ(x) is

∫∫∫
D[Aµ(x)] −→

∫∫∫
D[Aµ(x)]

∫∫∫
D[Λ(x)]∆[G(AΛ

µ)]× Det

[
δG(AΛ

µ (x))

δΛ(y)

]
. (9)

The functional determinant here

DFP = Det

[
δG(AΛ

µ(x))

δΛ(y)

]
(10)

is called the Fadde’ev–Popov determinant after Ludvig Fadde’ev and Victor Popov. In the

Landau gauge

G(AΛ
µ) = ∂µA

Λ
µ = ∂µAµ − ∂2Λ, (11)

so the Fadde’ev–Popov determinant is

DFP = Det

[
δG(AΛ

µ )

δΛ

]
= Det[−∂2]. (12)

Although this determinant is badly divergent, it does not depend on the EM fields Aµ(x)

or on the source Jµ(s), so we may treat it as a constant factor in the normalization of the

functional integral.

Now that we have properly defined the gauge-fixing procedure in the context of the

functional integral, let’s use it to calculate the source-dependent partition function Z[J ].
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Staring with the naive functional integral (1), we have

Znaive[J ] =

∫∫∫
D[Aµ(x)] exp

(
−SE [Aµ, Jµ]

)

=

∫∫∫
D[Aµ(x)]

∫∫∫
D[Λ(x)]∆[∂µA

Λ
µ ]× Det[−∂2]× exp

(
−SE [Aµ, Jµ]

)
.

(13)

For a non-conserved source Jµ(x), the net action is not quite gauge invariant; instead

S[AΛ
µ , Jµ] = S[Aµ, Jµ] −

∫
d4xΛ(x)× ∂µJµ(x). (14)

Consequently, re-expressing the action in eq. (13) in terms of the gauge-fixed EM field AΛ
µ (x),

we have

Znaive[J ] =

∫∫∫
D[Aµ(x)]

∫∫∫
D[Λ(x)]∆[∂µA

Λ
µ ]× Det[−∂2]× exp

(
−SE [A

Λ
µ , Jµ]

)

× exp

(
+

∫
d4xΛ ∂µJµ

)
.

(15)

Now let’s change the order of the functional integrals and integrate over the Aµ(x) before

integrating over the Λ(x). Thus, let

let Ẑ[J,Λ]
def
=

∫∫∫
D[Aµ(x)]∆[∂µA

Λ
µ ]× Det[−∂2]× exp

(
−SE [A

Λ
µ , Jµ]

)
, (16)

then Znaive[J ] =

∫∫∫
D[Λ(x)] exp

(∫
d4xΛ ∂µJµ

)
× Ẑ[J,Λ]. (17)

Note that the inner integral (16) is evaluated for a fixed Λ(x), which means that the functional

map from the original Aµ(x) to the AΛ
µ(x) = Aµ(x) − ∂µΛ(x) does not change the measure

of the functional integral, D[AΛ
µ ] = D[Aµ] for a fixed Λ(x). Consequently,

Ẑ[J,Λ] =

∫∫∫
D[Aµ(x)]∆[∂µA

Λ
µ ]× Det[−∂2]× exp

(
−SE [A

Λ
µ , Jµ]

)

=

∫∫∫
D[AΛ

µ(x)]∆[∂µA
Λ
µ ]× Det[−∂2]× exp

(
−SE [A

Λ
µ , Jµ]

)

=

∫∫∫
D[Aµ(x)]∆[∂µAµ]× Det[−∂2]× exp

(
−SE [Aµ, Jµ]

)
(18)

where on the last line I have simply renamed the integration variable from AΛ
µ(x) to Aµ(x).

However, thanks to the ∆[∂µAµ] factor, the Aµ(x) field on the last line is constrained to

obey the Landau gauge condition ∂µAµ = 0.
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Note: Nothing on the last line of eq. (18) depends on the Λ(x), which makes the Ẑ[J, 6Λ]

completely Λ-independent. Consequently, eq. (17) becomes

Znaive[J ] =

∫∫∫
D[Λ(x)] exp

(∫
d4xΛ ∂µJµ

)
× Ẑ[J only]

= Ẑ[J only]×

∫∫∫
D[Λ(x)] exp

(∫
d4xΛ ∂µJµ

)
.

(19)

On the second line here, we have factorized the naive functional integral over all the EM

potentials Aµ(x) into an integral Ẑ over the physically-distinct (i.e., gauge-inequivalent)

potential and an integral over the gauge redundancies Λ(x). The second factor here is

unphysical, and we should get rid of it. Thus, we redefine the electromagnetic partition

function as a properly-normalized integral over the EM fields in the Landau gauge,

Z[J ]
def
= Ẑ[J ] =

∫∫∫
D[Aµ(x)]∆[∂µAµ]× Det[−∂2]× exp

(
−SE [Aµ, Jµ]

)
. (20)

Before we proceed to use this partition function, I would like to comment on the

Fadde’ev–Popov determinant Det[−∂2] as a factor inside the integral (20). Since this deter-

minant does not depend on the EM field or the source, we may pull it outside the integral,

and even absorb it into the overall normalization factor of the integral. However, I prefer to

keep this factor explicit in eq. (20) for two reasons:

1. In the analogue of eq. (20) for the non-abelian gauge fields (see my notes for the

details), the Fadde’ev–Popov determinant becomes field-dependent, and we really need

to keep it inside the functional integral. In an abelian gauge theory like QED this is

not necessary, but I would like you to get used to this factor before we get to the

non-abelian theories.

2. While the determinant Det[−∂2] does not depend on any fields, it does depend on

the geometry of the Euclidean spacetime. In particular, at a finite temperature

T = 1/β the Euclidean time x4 becomes periodic with period β, so the determinant

Det[−partial2] should be taken over the Hilbert space of peridic functions ψ(x, x+β) =

ψ(x, x4). Consequently, the Fadde’ev-Popov determinant depends on the temperature,

which affects the thermal free energy F = −T logZ(T ) of the electromagnetic field.

To see how this works in detail, see homework set#20, problem 1(f).
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The Photon Propagator.

Now let’s use the functional integral (20) to generate the photon propagator in the

Landau gauge. Similar to the free scalar case, we start with the Euclidean action and split

into a source-less term for a shifted field plus a term involving only the source,

SE [A, J ] =

∫
d4x

(
1
2(∂νAµ)

2 − 1
2(∂µAµ)

2 − AµJµ

)

= SE [A
′, \J ] −

1

2

∫
d4x

∫
d4y Jµ(x)Gµν(x− y)Jν(y)

(21)

where Gµν(x− y) is some kernel while A′
µ(x) = Aµ(x) + some J-dependent shift. However,

due to the ∆[∂µAµ] factor in the functional integral (20), both the original Aµ field and the

shifted field A′
µ must obey the Landau gauge condition ∂µAµ = ∂µA

′
µ = 0.

In the momentum space, the action becomes

SE =

∫
d4k

(2π)4

(
k2

2
Aµ(−k)Aµ(k) − Aµ(−k)Jµ(k)

)
. (22)

To split the action as in eq. (21), we let

A′
µ(k) = Aµ(k) −

1

k2
Π⊥
µν(k)Jν(k) (23)

where the

Π⊥
µν(k) = δµν −

kµkν
k2

(24)

factor assures that we preserve the Landau gauge condition kµA
′
µ(x) = kµAµ(k) = 0. Con-

sequently,

k2

2
A′
µ(−k)A

′
µ(k) =

k2

2
Aµ(−k)Aµ(k) − Aµ(−k)Π

⊥
µν(k)Jν(k) +

1

2k2
Jµ(−k)Π

⊥
µν(k)Jν(k)

〈〈 using Aµ(−k)kµ = 0 and hence Aµ(−k)Π
⊥
µν(k) = Aν(−k) 〉〉

=
k2

2
Aµ(−k)Aµ(k) − Aν(−k)Jν(k) +

1

2k2
Jµ(−k)Π

⊥
µν(k)Jν(k),

(25)
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and therefore

SE [A, J ] = SE [A
′, \J ] −

1

2

∫
d4k

(2π)4
Jµ(−k)

Π⊥
µν(k)

k2
Jν(k). (26)

In the Euclidean coordinate space, this formula becomes eq. (21) for

Gµν(x− y) =

∫
d4k

(2π)4
e−ik(x−y)×

Π⊥
µν(k)

k2
=

1

8π2

(
1

|x− y|2
+

2(x− y)µ(x− y)ν

|x− y|4

)
. (27)

Once we have proved eq. (21), the photon propagator in the Landau gauge emerges from

the partition function (20) in the usual way. Indeed,

Z[J ] =

∫∫∫
D[Aµ(x)]∆[∂µAµ(x)] Det[−∂2]× exp

(
−SE [A, J ]

)

=

∫∫∫
D[A′

µ(x)]∆[∂µA
′
µ(x)] Det[−∂2]×

× exp

(
SE [A

′, \J ] −
1

2

∫
d4x

∫
d4yJµ(x)Gµν(x− y)Jν(y)

)

= exp

(
−

1

2

∫
d4x

∫
d4yJµ(x)Gµν(x− y)Jν(y)

)
×

×

∫∫∫
D[A′

µ(x)]∆[∂µA
′
µ(x)] Det[−∂2]× exp

(
−SE [A

′, \J ]
)

= exp

(
−

1

2

∫
d4x

∫
d4yJµ(x)Gµν(x− y)Jν(y)

)
× Z[0],

(28)

so the generation functional F [J ] = − logZ[J ] for the correlation functions of the EM fields

is simply

F [J ] = F [0] +
1

2

∫
d4x

∫
d4yJµ(x)Gµν(x− y)Jν(y). (29)

Therefore, the photon’s propagator in the Euclidean coordinate space is

〈Aµ(x)Aν(y)〉 =
δ2F [J ]

δJµ(x) δJν(y)
= Gµν(x− y), (30)

precisely as in eq. (27). In the momentum space, this Landau-gauge photon propagator is

µ ν
=

Π⊥
µν(k)

k2
=

1

k2

(
δµν −

kµkν
k2

)
(Euclidean)

→
−i

k2 + i0

(
gµν −

kµkν
k2 + i0

)
(Minkowski)

(31)
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The Feynman Gauge

The functional integral (20) and the photon propagator (31) are for the EM field in the

Landau gauge ∂µAµ(x) ≡ 0. In the Feynman gauge, there is no simple gauge-fixing condition

like this; instead, we use a two-step procedure.

1. First, pick an arbitrary scalar function ω(x) and replace the Landau Gauge condition

with ∂µAµ(x) ≡ ω(x) for the fixed ω(x). In terms of the functional integral, this means

Z[J, ω] =

∫∫∫
D[Aµ(x)]∆[∂µAµ − ω]×DFP × exp

(
−SE [A, J ]) (32)

where DFP is the Fadde’ev–Popov determinant for the modified gauge condition,

DFP = Det

[
δ
(
∂µA

Λ
µ (x)− ω(x)

)

δΛ(y)

]
. (33)

Actually, this determinant is independent of the ω(x); indeed,

∂µA
Λ
µ(x) − ω(x) = ∂µAµ(x) − ∂2Λ(x) − ω(x) = [Λ-independent] − ∂2Λ, (34)

hence

δ
(
∂µA

Λ
µ − ω

)

δΛ
= −∂2 =⇒ DFP = Det[−∂2], (35)

exactly as in the Landau gauge. Consequently, the functional integral

Z[J, ω] =

∫∫∫
D[Aµ(x)]∆[∂µAµ − ω]×Det[−∂2]× exp

(
−SE [A, J ]) (36)

does not depend on the ω(x) function; any ω(x) gives the same Z[J, 6ω] as in the Landau

gauge.

2. Since the ω(x) does not make any difference, let’s average the partition function (36)

over all possible ω(x) functions with a Gaussian weight

exp

(
−

1

2ξ

∫
d4xω2(x)

)
. (37)

Up to a constant overall factor (Det[ξ])−1/2, this means redefining the partition func-
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tion as

Z[J ] =

∫∫∫
D[ω(x)] exp

(
−

1

2ξ

∫
d4xω2(x)

)
× Z[J, ω]. (38)

If we combine the exponential here with the exponential in eq. (36), we may rewrite

this gauge-averaged partition function as

Z[J ] =

∫∫∫
D[ω(x)]

∫∫∫
D[Aµ(x)]∆[∂µAµ −ω]×Det[−∂2]× exp

(
−

∫
d4x

(
Lnet − JµAµ

))

(39)

where

Lnet = 1
4F

2
µν +

1

2ξ
ω2. (40)

Now in the context of the integral (39) over both ω(x) and Aµ(x), we may reinterpret

the gauge-fixing factor ∆[∂µAµ−ω] as a constraint on the ω(x) functions rather than a

constraint on the EM potentials Aµ(x). Consequently, integrating over the ω(x) before

integrating over the Aµ(x), we have

∫∫∫
D[ω(x)]∆[∂µAµ − ω] = 1, (41)

but everywhere else in the integral (39) we should let ω(x) = ∂µAµ(x). In particular,

the net Lagrangian (40) becomes

Lnet = 1
4F

2
µν +

1

2ξ
(∂µAµ)

2. (42)

The second term here is usually called the gauge-fixing term.

Altogether, taking the integral over ω in eq. (39) leaves us with the Feynman-gauge

partition function

Z[J ] =

∫∫∫
D[Aµ(x)] exp

(
−

∫
d4x

(
Lnet − JµAµ

))
× Det[−∂2]. (43)

Note: this functional integral is over all possible potentials Aµ(x), including both the phys-

ically distinct and the gauge-equivalent potentials; there is no gauge-fixing ∆-functional

in this integral. Instead, we have effectively modified the Lagrangian for the EM field by
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adding a gauge-fixing term. Consequently, we do not factor out the integral over the gauge-

equivalent potentials; instead, the gauge-fixing term in the Lagrangian turns this unphysical

integral into a convergent overall constant, which is OK.

Since in the Feynman gauge there are no constraints, the photon propagators obtains

directly from the net Lagrangian (42). Indeed, integrating by parts the net Euclidean action,

we obtain

SE =

∫
d4x

(
1
4F

2
µν + 1

2ξ (∂µAµ)
2 − JµAµ

)
=

∫
d4x

(
1
2AµDµνAν − JνAν

)
(44)

for the differential operator

Dµν = −∂2 × δµν + ∂µ∂ν −
1

ξ
∂µ∂ν . (45)

Then proceeding exactly as we did for the scalar and Dirac fields in class — calculating

the Gaussian partition function by shifting the A field, then using F = − logZ[J ] as the

generating functional, — we find that the coordinate-space photon propagator is simply the

inverse of the Dµν operator. In the Euclidean momentum space, this operator becomes

Dµν(k) = k2 × δµν +
(
ξ−1 − 1

)
× kµkν = k2 ×Π⊥

µν(k) +
k2

ξ
× Π

‖
µν(k) (46)

where Π⊥ and Π‖ are the projection matrices onto directions ⊥ and ‖ to the momentum k.

Consequently, the inverse operator — and hence the photon propagator in the momentum

space — obtains as the inverse of the matrix (46) for each k, thus

D−1(k) =
1

k2
× Π⊥ +

ξ

k2
× Π‖, (47)

or in explicit index notations

µ ν
=

1

k2

(
δµν + (ξ − 1)×

kµkν
k2

)
(Euclidean)

→
−i

k2 + i0

(
gµν + (ξ − 1)×

kµkν
k2 + i0

)
(Minkowski)

(48)

PS: Strictly speaking, eq. (48) gives a whole family of propagators for the Feynman-like

gauges. The Feynman gauge proper obtains for ξ = 1.
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