
PHY–396 K. Problem set #4. Due October 4, 2016.

1. First, a reading assignment: my notes on translating between the wave-function and the

Fock-space languages for the operators. At the end of the lecture on 9/22 I have showed

you the bare bones of these notes — the wave-function formulae for the creation and anni-

hilation operators, the Fock-space formulae for the net one-body and two-body operators,

and a couple of commutator theorems, — but I did not have time for the proofs. So please

read the notes by yourselves to see how the translation between the first-quantized and the

second-quantized formalisms really works.

2. In class I have explained a free relativistic scalar field into plane wave solutions (of the

classical equation of motion) multiplied by annihilation or creation operators. In this

problem, you will derive a similar expansion for the massive vector field,

Âµ(x) =

∫
d3k

(2π)32ωk

∑
λ

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+ωk

(1)

The massive vector field Âµ(x) should be familiar to you from two previous homework

sets: in set#1 (problem 1) you’ve derived its equation of motion from the Lagrangian,

while in set#3 (problems 1–2) you’ve developed the Hamiltonian formalism and quantized

the field. For the present exercise you will need the equal-times commutation relations of

the quantum fields,

[Âi(x), Âj(y)] = 0, [Êi(x), Êj(y)] = 0, [Âi(x), Êj(y)] = −iδijδ(3)(x− y) (2)

(in h̄ = 1, c = 1 units), the Hamiltonian operator

Ĥ =

∫
d3x

(
1
2Ê

2 +
(∇ · Ê)2

2m2
+ 1

2(∇× Â)2 + 1
2m

2Â2

)
. (3)

for the free fields (i.e., for Ĵµ(x) ≡ 0), and the operatorial identity

Â0(x) = −∇ · Ê(x)

m2
(4)

(again, for Ĵ0(x) ≡ 0).
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In general, a QFT has a creation operator â†k,λ and an annihilation operator âk,λ for

each plane wave with momentum k and polarization λ. The massive vector fields have 3

independent polarizations corresponding to 3 orthogonal unit 3–vectors. One may use any

basis of 3 such vectors eλ(k), and it’s often convenient to make them k–dependent and

complex; in the complex case, orthogonality+unit length mean

eλ(k) · e∗λ′(k) = δλ,λ′ . (5)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik × ,

namely

ik× eλ(k) = λ|k|eλ(k), λ = −1, 0,+1. (6)

By convention, the phases of the complex helicity eigenvectors are chosen such that

e0(k) =
k

|k|
, e∗±1(k) = −e∓1(k), eλ(−k) = −e∗λ(+k), (7)

for example, for k pointing in the positive z direction

e+1(k) = 1√
2

(
+1,+i, 0), e−1(k) = 1√

2

(
−1,+i, 0), e0(k) = (0, 0, 1). (8)

(a) As a first step towards constructing the âk,λ and â†k,λ operators, we Fourier transform

the vector fields Â(x) and Ê(x) and then decompose the vectors Âk and Êk into

helicity components,

Â(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Âk,λ , Âk,λ =

∫
d3x e−ikxe∗λ(k) · Â(x),

Ê(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Êk,λ , Êk,λ =

∫
d3x e−ikxe∗λ(k) · Ê(x).

(9)

Show that Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ, and derive the equal-time commutation

relations for the Âk,λ and Êk,λ operators.
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(b) Show that

Ĥ =

∫
d3k

(2π)3

∑
λ

(
Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ

)

where ωk =
√

k2 +m2,

and Ck,λ =

{
ω2
k/m

2 for λ = 0,

1 for λ = ±1.

(10)

(c) Define the annihilation and the creation operators according to

âk,λ =
ωkÂk,λ − iCk,λÊk,λ√

Ck,λ
, â†k,λ =

ωkÂ
†
k,λ + iCk,λÊ

†
k,λ√

Ck,λ
, (11)

and verify that they satisfy equal-time bosonic commutation relations (relativistically

normalized).

(d) Show that

Ĥ =

∫
d3k

(2π)3 2ωk

∑
λ

ωk â
†
k,λâk,λ + const. (12)

Note: by a constant here I mean a number rather than an operator. It happens to be

a badly divergent number, but that’s OK.

(e) Next, consider the time dependence of the free vector field in the Heisenberg picture.

Show that

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

.

(13)

(f) Write down similar expansion for the electric field Ê(x, t) and the scalar potential

Â0(x, t); use eq. (4) for the latter.
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(g) Combine the results of parts (e) and (f) into a relativistic formula (1)for the 4–vector

field Âµ(x). The polarization 4–vectors fµ(k, λ) in that formula should be

fµ(k, λ) =


(
0, eλ(k)

)
for λ = ±1,(

|k|
m ,

ωk

m
k
|k|

)
for λ = 0.

(14)

(h) Show that these polarization 4–vectors obtain by Lorentz boosting of the purely-spatial

polarization vectors (0, eλ(k)) into the frame of the wave moving with the velocity

v = k/ωk.

Also, check that the fµ(k, λ) satisfy

kµf
µ
k,λ = 0, fµk,λ

(
f∗k,λ′

)
µ

= −δλ,λ′ . (15)

(i) Finally, verify that the quantum vector field (1) satisfies the free equations of motion

∂µÂ
µ(x) = 0 and (∂2 + m2)Âµ(x) = 0; moreover, each mode in the expansion (1)

satisfies the equations of motions without any help from the other modes.

3. The ordinary quantum mechanics of a single relativistic particle — or any fixed number

of relativistic particles — violates the relativistic causality by allowing particles to move

faster than light. In this problem, we shall see how this works for the simplest case of a

single free relativistic spinless particle with the Hamiltonian

Ĥ = +

√
M2 + P̂2 (16)

(in the c = h̄ = 1 units). By general rules of quantum mechanics, the amplitude U(x→ y)

for this particle to propagate from point x at time x0 to point y at time y0 obtains from

the Hamiltonian (16) as

U(x→ y) =
〈
y, y0|x, x0

〉Heisenberg

picture
= 〈y| exp

(
−i(y0 − x0)Ĥ

)
|x〉Schroedingerpicture . (17)

(a) Use momentum basis for the Hamiltonian (16) to evaluate the coordinate-basis evolu-

tion kernel (17) as

U(x→ y) =

∫
d3k

(2π)3
exp
(
ik · (y− x)− iω(k)× (y0− x0)

)
= 2i

∂

∂y0
D(y− x) (18)

where ω(k) =
√
M2 + k2, then reduce the momentum integral to a one-dimensional
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integral

U(x→ y) =
−i

4π2 r

+∞∫
−∞

dk k exp
(
irk − itω(k)

)
(19)

where r = |y − x| and t = y0 − x0.

Later in this problem we shall need the asymptotic behavior of the integral (19) in the

limit of r → ∞, t → ∞, fixed t/r ratio. The best method for obtaining the asymptotic

behavior of such integrals — or more general integrals of the form

∫
dx f(x)× exp

(
−Ag(x)

)
, A → ∞ (20)

is the saddle-point method (AKA the mountain-pass method).

(b) If you are not familiar with the saddle-point method, read my notes on it.

Those notes were originally written for a QM class, so they include the Airy function

example and the relation of the Airy functions to the WKB approximation. You do

not need the WKB or the Airy functions for this homework, just the saddle-point

method itself, so focus on the first 6 pages of my notes, the rest is optional.

(c) Now let’s use the saddle point method to evaluate the integral (19) in the limit of

r → ∞, t → ∞, while the ratio r/t stays fixed. Specifically, let (r/t) < 1 so we stay

inside the future light cone.

Show that in this limit, the evolution kernel (19) becomes

U(x→ y) ≈
(
−iM
2π

)3/2

× t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (21)

(d) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

r, t→ +∞. Show that in this limit, the kernel becomes

U(x→ y) ≈ iM3/2

(2π)3/2
× t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (22)

Hint: for r > t the saddle point is at complex k.
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Eq. (22) shows that the propagation amplitude U(x→ y) diminishes exponentially outside

the light cone, but it does not vanish! Thus, given a particle localized at point x at the time

x0, at a later time y0 = x0 + t the wave function is mostly limited to the future light cone

r < t, but there is an exponential tail outside the light cone. In other words, the probability

of superluminal motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

future lightcones can either create a particle at x and then annihilate it at y, or else an-

nihilate it at y and then create it at x. I will show in class that the two effects precisely

cancel each other, so altogether there is no propagation outside the light cone. That’s how

relativistic QFT is perfectly causal while the relativistic QM is not.
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