
PHY–396 K. Problem set #5. Due October 11, 2015.

1. Consider once again the massive vector field Âµ(x). In the previous homework (set#4,

problem 2), you (should have) expanded the free vector field into the creation and annihi-

lation operators multiplied by the plane-waves according to

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikx × fµk,λ × âk,λ + e+ikx × f∗µk,λ × â

†
k,λ

)k0=+ωk

. (1)

The λ here labels the independent polarizations of a vector particle (for example, the

helicities λ = −1, 0,+1), while fµk,λ are the polarization vectors obeying

kµf
µ
k,λ = 0, gµνf

µ
k,λf

∗ν
k,λ′ = −δλ,λ′ . (2)

In this problem, we shall calculate the Feynman propagator for the massive vector field (1).

(a) First, a lemma: Show that any polarization vectors obeying the constraints (2) also

obey ∑
λ

fµk,λf
∗ν
k,λ = −gµν +

kµkν

m2
. (3)

(b) Next, calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(4)

(c) Now consider a free scalar field (of the same mass m as the vector field) and its

Feynman propagator Gscalar
F (x− y). Show that

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y) = 〈0|TÂµ(x)Âν(y) |0〉 +

i

m2
δµ0δν0δ(4)(x− y). (5)
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To avoid the δ–function singularity in formulae like (5), the time-ordered product of the

vector fields (or rather, just of their Â0 components) is modified
?

according to

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y). (6)

Consequently, the Feynman propagator for the massive vector field is defined using the

modified time-ordered product of the two fields,

GµνF (x− y)
def
= 〈0|T∗Âµ(x)Âν(y) |0〉 (7)

(d) Show that this propagator obtains as

GµνF (x− y) =

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
× ie−ik(x−y)

k2 −m2 + i0
. (8)

(e) Finally, write the classical action for the free vector field as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (9)

where Dµν is a differential operator, and show that the Feynman propagator (8) is a

Green’s function of this operator,

Dµνx GFνλ(x− y) = +iδµλδ
(4)(x− y). (10)

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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2. This problem is about the continuous Lorentz group SO+(3, 1) and its generators Ĵµν =

−Ĵνµ. In 3D terms, the six independent Ĵµν generators comprise the 3 components of

the angular momentum Ĵ i = 1
2ε
ijkĴjk — which generate the rotations of space — plus 3

generators K̂i = Ĵ0i = −Ĵ i0 of the Lorentz boosts.

(a) In 4D terms, the commutation relations of the Lorentz generators are[
Ĵαβ, Ĵµν

]
= igβµĴαν − igαµĴβν − igβν Ĵαµ + igαν Ĵβµ. (11)

Show that in 3D terms, these relations become[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (12)

The Lorentz symmetry dictates the commutation relations of the Ĵµν with any operators

comprising a Lorentz multiplet. In particular, for any Lorentz vector V̂ µ

[
V̂ λ, Ĵµν

]
= igλµV̂ ν − igλν V̂ µ. (13)

(b) Spell out these commutation relations in 3D terms, then use them to show that the

Lorentz boost generators K̂ do not commute with the Hamiltonian Ĥ.

(c) Show that even in the non-relativistic limit, the Galilean boosts t′ = t, x′ = x + vt

and their generators K̂G do not commute with the Hamiltonian.

Note: Only the time-independent symmetries commute with the Hamiltonian. But

when the action of a symmetry is manifestly time dependent — like a Galilean boost

x′ = x + vt or a Lorentz boost — the symmetry operators do not commute with the

time evolution and hence with the Hamiltonian.

Next, consider the little group G(p) of Lorentz symmetries preserving some momentum

4–vector pµ. For the moment, allow the pµ to be time-like, light-like, or even space-like —

anything goes as long as p 6= 0.

(d) Show that the little group G(p) is generated by the 3 components of the vector

R̂ = p0Ĵ + p× K̂ (14)

after a suitable component-by-component rescaling.
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Suppose the momentum pµ belonds to a massive particle, thus pµpµ = m2 > 0. For

simplicity, assume the particle moves in z direction with velocity β, thus pµ = (E, 0, 0, p)

for E = γm and p = βγm. In this case, the properly normalized generators of the little

group G(p) are the

J̃x =
1

m
R̂x = γĴx − βγK̂y,

J̃y =
1

m
R̂y = γĴy + βγK̂x,

J̃z =
1

γm
R̂z = Ĵz, the helicity.

(15)

(e) Show that these generators have angular-momentum-like commutators with each other,

[J̃ i, J̃j ] = iεijkJ̃k. Consequently, the little group G(p) is isomorphic to the rotation

group SO(3).

Now suppose the momentum pµ belongs to a massless particle, pµpµ = 0. Again, assume

for simplicity that the particle moves in the z direction, thus pµ = (E, 0, 0, E). In this

case, we cannot normalize the generators of the little group as in eq. (15); instead, let’s

normalize them according to

Î =
1

E
R̂ = Ĵ + ~β × K̂, (16)

or in components,

Îx = Ĵx − K̂y, Îy = Ĵy + K̂x, Îz = Ĵz. (17)

(f) Show that these generators obey similar commutation relations to the p̂x, p̂y, and Ĵz

operators, namely

[Ĵz, Îx] = +iÎy, [Ĵz, Îy] = −iÎx, [Îx, Îy] = 0. (18)

Consequently, the little group G(p) is isomorphic to the ISO(2) group of rotations and

translations in the xy plane.
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(g) Finally, show that for a tachyonic momentum with pµpµ < 0, the properly normalized

generators of the little group have similar commutation relations to the K̂x, K̂y, and

Ĵz operators. Consequently, the little group G(p) is isomorphic to the SO+(2, 1), the

continuous Lorentz group in 2 + 1 spacetime dimensions.

3. Now let’s focus on the massless particles. As explained in class, the finite unitary multiplets

of the G(p) ∼= ISO(2) group generated by the (17) operators are singlets |λ〉, althouth they

are non-trivial singlets for λ 6= 0. Specifically, the state |λ〉 is an eigenstate of the helicity

operator Ĵz (for the momentum in the z direction) and are annihilated by the Îx,y operators,

Ĵz |λ〉 = λ |λ〉 , Îx |λ〉 = 0, Îy |λ〉 = 0. (19)

(a) Show that in 4D terms the state |p, λ〉 of a massless particle satisfies

εαβγδĴ
βγP̂ δ |p, λ〉 = 2λP̂α |p, λ〉 . (20)

(b) Use eq. (20) to show that continuous Lorentz transforms do not change helicities of

massless particles,

∀L ∈ SO+(3, 1), D̂(L) |p, λ〉 = |Lp, sameλ〉 × eiphase. (21)

4. Finally, a reading assignment. To help you understand the relations between the continuous

symmetries, their generators, the multiplets, and the representations of the generators and

of the finite symmetries, read about the rotational symmetry and its generators in chapter 3

of the J. J. Sakurai’s book Modern Quantum Mechanics.
?

Please focus on sections 1, 2,

3, second half of section 5 (representations of the rotation operators), and section 10; the

other sections 4, 6, 7, 8, and 9 are not relevant to the present class material.

PS: If you have already read the Sakurai’s book before but it has been a while, please read

it again.

? The UT Math–Physics–Astronomy library has several hard copies but no electronic copies of the book.
However, you can find several pirate scans of the book (in PDF format) all over the web; Google them up
if you cannot find a legitimate copy.
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