PHY-396 K. Problem set #6. Due October 18, 2016.

. First, an exercise in Dirac matrices v#. In this problem, you should not assume any explicit

matrices for the v# but simply use the anticommutation relations
Y+ At = 2" (1)

When necessary, you may also assume that the Dirac matrices are 4 x 4, and the 7 matrix
is hermitian while the v',v% 73 matrices are antihermitian, (7°)" = +4° while (y/)T = —
for i =1,2,3.

(a) Show that v%7a = 4,7%7"%a = =29",7*7"7"Ya = 4g"", and 129y 7" yq = —2977#9.
Hint: use y*v" = 2¢"% — 4¥~* repeatedly.

(b) The electron field in the EM background obeys the covariant Dirac equation
(iv"Dy — m)¥(x) = 0 where D, ¥ = 9, ¥ — ieA, V. Show that this equation implies

(DD* + m?* — eF,,S")¥(z) = 0. (2)
def . 0.1.2.3

Besides the 4 Dirac matrices v#, there is another useful matrix v° = 79914243

(c) Show that the 7° anticommutes with each of the v* matrices — y>y* = —y#+® — and

commutes with all the spin matrices, 7> S* = +SH~5.
(d) Show that the 7° is hermitian and that (7°)% = 1.
(e) Show that v° = (i/24)eKAMV7“7A7“7” and that ylEqAytarl = 1945 M A5,
(f) Show that yPPyHa¥l = 4£6ie MV ~, A5,

(g) Show that any 4 x 4 matrix I" is a unique linear combination of the following 16 matrices:
L A#, gl = =205, 454k, and 4P,

0128 = —1, egrag = +1, Y] =yl — ¥t
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x My conventions here are: €



1*. For extra challenge, let’s generalize the Dirac matrices to spacetime dimensions d # 4. Such

matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Let T' = "9 ... 491 be the generalization of the v° to d dimensions; the pre-factor i = =i
or +1 is chosen such that ' = T'T and I'2 = +1.

(a) For even d, I" anticommutes with all the v#. Prove this, then use this fact to show that
there are 2¢ independent products of the v# matrices, and consequently the matrices

should be 24/2 x 24/2

(b) For odd d, T' commutes with all the I'* — prove this. Consequently, one can set I' = +1

or I' = —1; the two choices lead to in-equivalent sets of the ~*.

Classify the independent products of the 4 for odd d and show that their net number

is 29-1: consequently, the matrices should be 2(d=1)/2 ¢ o(d=1)/2,

2. Now let’s go back to d = 3 + 1 and learn about the Weyl spinors and Weyl spinor fields.
Since all the spin matrices S#¥ commute with the 7°, for all continuous Lorentz symmetries
L%, their Dirac-spinor representations M, (L) = exp(—%@agsaﬁ ) are block-diagonal in the
eigenbasis of the 4°. This makes the Dirac spinor ¥ a reducible multiplet of the continu-
ous Lorentz group SO™(3,1) — it comprises two different irreducible 2-component spinor

multiplets, called the left-handed Weyl spinor ¢;, and the right-handed Weyl spinor ¥ p.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

0 ot ot 1,0, —0),
H :( 0) where (Lo ) (3)

Uu 6u déf (12x27+0)7

and consequently

s (-1 0 (ML) 0
g —(0 +1> - MD(L)—( 0 MR(L)>. (4)

(a) Check that the 4° matrix indeed has this form and write down explicit matrices for the

SH in the Weyl convention.



(b)

Show that for a space rotation R through angle 6 around axis n,
Mp(R) = Mg(R) = exp(—%6n-0). (5)
Likewise, show that for a Lorentz boost B of speed v in the direction n,
Mp(B) = exp(—% rn-0) while Mg(B) = exp(+3rn-0) (6)

where r = artanh(v) is the rapidity of the boost. For successive boosts in the same
direction, the rapidities ass up, r142 = r1 + ro. Consequently, a finite Lorentz boost of

rapidity 7 in the direction n is B = exp(rn - K)

The more familiar 8 and ~ parameters of a Lorentz boost are related to the rapidity as
f = tanh(r), 7 = cosh(r), [y = sinh(r). (7)

Show that in terms of these parameters, eqgs. (6) translate to
Mp(B) = J/yx+1—-p3n-0o, Mgr(B) = /Yy x+y1+ fn-0. (8)

Show that for any continuous Lorentz symmetry L, the My (L) and the Mp(L) matrices

are related to each other according to
MR(L) = 09 X ME(L) X 09, ML(L) = 09 X ME(L) X 09 . (9)

Hint: all 3 Pauli matrices o;, are related to their comlplex congugates o} according to

* — .
020,02 = —04,

In the Weyl convention for the Dirac matrices, the Dirac spinor field W(z) splits into the
left-handed Weyl spinor field ¢ (x) and the right-handed Weyl spinor field )r(z) according

to

pi(t) — <¢L($)>) here Yr(a’) = Mp(L)Yp(z), (10)
Yp(w) Yr(a") = Mg(L)yg(x).



(e) Show that the hermitian conjugate of each Weyl spinor transforms equivalently to the
other spinor. Specifically, the o2 x 9} (x) transforms under continuous Lorentz symme-

tries like the 15 (x), while the o2 X 9} (x) transforms like the 1} ().

Note: the * superscript on a multi-component quantum field means hermitian conjuga-

tion of each component field but without transposing the compoents, thus

T
¢L — (¢L1)’ z — <1/JTLl>7 while ¢2 = <w21 w22>7 (11)
VLo

and likewise for the 15 and its conjugates.
Finally, consider the Dirac Lagrangian W (iy*d, — m)U.

(f) Express this Lagrangian in terms of the Weyl spinor fields ¢ (z) and ¢ (z) (and their
conjugates ¢E(m) and @DL(@)

(g) Show that for m = 0 — and only for m = 0 — the two Weyl spinor fields become

independent from each other.

3. The third problem is about the plane-wave solutions of the Dirac equation, e~P*u, and

etiPry,, for some z-independent Dirac spinors uq(p, s) and ve/(p, s).

(a) Check that these waves indeed solve the Dirac equation provided p? = m? while
#—m)u(p,s) = 0, F+m)v(p,s) = 0. (12)

By convention, we always take E = p = +4/p? +m? — that’s why we have both e~ %%y,
and ety types of wave — while the spinor coefficients u(p, s) and v(p, s) are normalized

to

ul (p, s)u(p, ') = vi(p,s)v(p,s") = 2Eds . (13)

In this problem we shall write down explicit formulae for these spinors in the Weyl basis for

the v# matrices.



(b) Show that for p = 0,

(14)

u(p=0,s) = (\/mﬁs)

vmés
where & is a two-component SO(3) spinor encoding the electron’s spin state. The &g

are normalized to 5155' = s,/

(¢) For other momenta, u(p,s) = Mp(boost) x u(p = 0,s) for the boost that turns (m, 0)
into p#. Use egs. (8) to show that

( ) . (vE—p-Gfs) B ( pﬂo-'ufs> (15)
a N VE+p-0& B Puct &s '

(d) Use similar arguments to show that

+vVE —p-0n;s +4/Pudt ns
o (FTTIY_(),
—VE+p-ons

—1\/Puot ns
where 74 are two-component SO(3) spinors normalized to 77;773’ = 05,4/

Physically, the ns should have opposite spins from & — the holes in the Dirac sea have
opposite spins (as well as p*) from the missing negative-energy particles. Mathematically,

this requires n;rSns = —flS{s; we may solve this condition by letting 1y = g9€} = +i* ..

(e) Check that ns = 02&F = +i* ; indeed provides for the ?718775 = —@LS@;, then show that
this leads to v(p, s) = y2u*(p, s).

(f) Show that for the ultra-relativistic electrons or positrons of definite helicity A = j:%, the
Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl
spinor components ¥, (x) or ¥ g(z) of the Dirac spinor W(x), while the other component

becomes negligible. Specifically,

u(p,—%) ~ v2E<£L>, u(p,+3) ~ V2E<O)7
0 En
(17)
v(p,—3) =~ — 2E(0>, v(p,+3) ~ V2E<UR>‘
nr 0

Note that for the electron waves the helicity agrees with the chirality — they are both
left or both right, — but for the positron waves the chirality is opposite from the helicity.



Back in problem 2(g) we saw that for m = 0 the LH and the RH Weyl spinor fields decouple
from each other. Now this exercise show us which particle modes comprise each Weyl spinor:
The vy (x) and its hermitian conjugate wi(x) contain the left-handed fermions and the right-
handed antifermions, while the 1 p(x) and the 1/12(@ contain the right-handed fermions and
the left-handed antifermions.

4. Finally, let’s establish some basis-independent properties of the Dirac spinors u(p,s) and

v(p, s) — although you may use the Weyl basis to verify them.

(a) Show that
u(p, s)u(p,s’) = +2més,s,  v(p, s)v(p, s = —2mds ¢ ; (18)

note the £2m mormalization factors here, unlike the +2F factors in eq. (13) for the ufu

and the vfv.

(b) There are only two independent SO(3) spinors, hence ) 8 = Y os nins = 1,.,. Use
this fact to show that

Z ua(p, s)ug(p,s) = (F+m)ap and Z va(p, 5)Us(p,s) = B—m)ap- (19)

s=1,2 s=1,2



