PHY-396 K. Problem set #7. Due October 27, 2016.

Most of this homework (problems 1-5) is about discrete symmetries of Dirac fermions,
the charge conjugation C and the parity (reflection of space) P. But the reading assignment
(problem 6, added on Tuesday 10/18 at 10 PM) is on a different subject, classifying the finite

multiplets of the Lorentz symmetry.

1. Let’s start with the charge conjugation C which exchanges particles with antiparticles, for

example the electrons e~ with the positrons e™,

Cle™(p,s)) = [e"(ps)), Clet(p,s) = [e7(p,9))- (1)

Note that the operator C is unitary and squares to one (repeating the exchange brings us

back to the original particles), hence Ct=C1=C.

(a) In the fermionic Fock space, the C operator act on multi-particle states by turning
each particle into an antiparticle and vice verse according to egs. (1). Show that this

action implies

Ca},,C = bf

(b) The quantum Dirac fields U(z) and U(z) are linear combinations of creation and

annihilation operators. Use egs. (2) and the plane-wave relations v(p, s) = v?u*(p, s)

and u(p, s) = v?v*(p, s) from the previous homeworK to show that

CU(2)C = 2T (z) and CU(2)C = U (2)y? (3)

where * stands for the hermitian conjugation of the component fields but without

transposing a column vector (of 4 Dirac components) into a row vector or vice verse,
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thus

Q@l 7»21{ = AL AL AL A

4 | U= (]88 9]) x 1,

T D R A e (4)
3 (2] =*

4 gl o= <1/31,1ﬁ2,1ﬁ3,154> x 7.

(c) Show that the Dirac equation transforms covariantly under the charge conjugation (3).

Hint: prove and use y#y2 = —2(y#)* for all 4 in the Weyl basis.

(d) Show that that the classical Dirac Lagrangian is invariant under the charge conjuga-
tion (up to a total spacetime derivative). Note that in the classical limit the Dirac
fields anticommute with each other, ¥} W3 = —WgW7 . Also, similar to the hermitian
conjugation of quantum fields, the complex conjugation of fermionic fields reverses

their order: (F1[Fy)* = FyF = —F[ F5.

. Now consider the parity P, the im-proper Lorentz symmetry that reflects the space but
not the time, (x,t) — (—x,+t). This symmetry acts on the Dirac spinor fields according
to

U(—x,+t) = +7°0(+x, +t) (5)
where the overall + sign is the intrinsic parity of the fermion species described by the U
field.

(a) Verify that the Dirac equation transforms covariantly under (5) and that the Dirac

Lagrangian is invariant (apart from £(x,t) — L(—x,1)).

In the Fock space, eq. (5) becomes

~

PU(x,t)P = +7°0(—x,1) (6)

for some unitary operator P that squares to one. Let’s find how this operator acts on the

particles and their states.



(b) First, look up the plane-wave solutions u(p, s) and v(p, s) in the previos homewor}

and show that u(—p,s) = —|—f}/OU(p, s) while v(—p,s) = —’YOU(I% 5).

(c) Now show that eq. (6) implies

Pa, ,P = +a_,,,, Pal P = xal . -
Pbps P = Fb_p s, PbL,sP - $bT—pHrs7

and hence
P|F(p,s)) = *|F(-p,+s)) and P|F(p,s)) = F[F(-p,+s)). (8

Note that the fermion F and the antifermion F have opposite intrinsic parities!

3. Some electrically neutral particles carry other kinds of changes (forex, the baryon number)
that distinguish them from their antiparticles. But other particles — such as the photon
or the 7° meson — have no charges at all and act as their own antiparticles. The charge

conjugation symmetry turns such particles n into themselves,

Cln(p,s)) = %|n(p.s)), 9)

where the overall + sign is called the C-parity or charge-parity of the particle in question.
This C-parity — as well as the P-parity under space reflections — limit the allowed decay
channels of unstable particles via strong and EM interactions which respect both C and

P symmetries.

Consider a bound state of a charged Dirac fermion F' and the corresponding an-
tifermion, for example a ¢¢ meson or a positronium “atom” (a hydrogen-atom-like bound
state of e~ and e™). For simplicity, let this bound state have zero net momentum. In the

Fock space of fermions and antifermions, such a bound state appears as

3

d R
[B(Pior = 0)) = /ﬁ > ¥(Preds 51,52) X @' (+Pregs $1) b (—Prea; 52) [0)  (10)

51,52

for some wave-function ¢ of the reduced momentum and of the two spins.
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Suppose this bound state has a definite orbital angular momentum L — which controls
the symmetry of the wave function 1 with respect to preqd — —Pred — and definite net
spin S — which controls the symmetry of ¢) under s; <+ so. Turns out that the L and the

S of the bound state also determine its C-parity and P-parity.
(a) Show that C' = (—1)F+9,

(b) Show that P = (—1)L+1,

Now let’s apply these results to the positronium — a hydrogen-atom-like bound state of
a positron e’ and an electron e”. The ground state of positronium is hydrogen-like 1S

(n =1, L =0), with the net spin which could be either S =0 or S = 1.

(c) Explain why the S = 0 state annihilates into photons much faster than the S = 1
state.
Hint#1: The annihilation rate of positronium into n photons happens in the n'" order
of QED perturbation theory, so the rate o< o (for a &= 1/137).
Hint#2: Since the EM fields couple linearly to the electric charges and currents (which
are reversed by 6), each photon has C' = —1.

. A Dirac spinor field ¥(z) comprises two 2-component Weyl spinor fields,

- (@)
U(z) = (&R(x))' (11)

Spell out the actions of the C, P, and the combined CP symmetry on the Weyl spinors.
In particular, show that C and P interchange the two spinors, while the combined CP

symmetry acts on the ¢ and the g independently from each other.



5. Now consider the bilinear products of a Dirac field ¥(z) and its conjugate ¥(x). Generally,
such products have form WI'W where I' is one of 16 matrices discussed in the
(problem 1.g); altogether, we have

S =TU, VF=Tyll, T = Uiyl AP = TyPym0, P = TinT. (12)

(a) Show that all the bilinears (12) are Hermitian.
Hint: First, show that (EF\II)]L = VT,

T
Note: despite the Fermi statistics, (Q/L\I/5> = —1—\112\110(.

(b) Show that under continuous Lorentz symmetries, the S and the P transform as scalars,

the V# and the A* as vectors, and the TH as an antisymmetric tensor.

(c¢) Find the transformation rules of the bilinears (12) under parity and show that while
S is a true scalar and V' is a true (polar) vector, P is a pseudoscalar and A is an axial

vector.

Next, consider the charge-conjugation properties of the Dirac bilinears. To avoid the
operator-ordering problems, take the classical limit where ¥(z) and Wi(x) anticommute
with each other, \Ila\I/TB = —\IJTB‘IJO[.

(d) Show that C turns WI'W into WI'W where ['¢ = 7042174042,

(e) Calculate I'® for all 16 independent matrices I" and find out which Dirac bilinears are

C—even and which are C—odd.

6. Finally, a reading assignment: jny notes on finite multiplets of the Spin(3,1) = SL(2C]

proup, the double cover of the continuous Lorentz group SO™(3,1)]

* For extra challenge, solve the exercises interspersed with the notes.
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