
PHY–396 K. Problem set #8. Due November 10, 2016.

1. As a warm-up exercise, consider N scalar fields φi of the same mass m with O(N) sym-

metric quartic couplings to each other,
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φ2i − λ

8

(
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. (1)

(a) Write down the Feynman propagators and vertices for this theory.

(b) Calculate the tree-level scattering amplitudes M, the partial cross-sections dσ/dΩ (in

the center-of-mass frame), and the total cross-sections for the following 3 processes:

(i) φ1 + φ2 → φ1 + φ2.

(ii) φ1 + φ1 → φ2 + φ2.

(iii) φ1 + φ1 → φ1 + φ1.

2. Next, consider the so-called linear sigma model comprising N massless scalar or pseu-

doscalar fields πi and a massive scalar field σ with both quartic and cubic couplings to

the pions, specifically
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where M2
σ = λf2 and κ = λf . =⇒ κ2 = λ×M2

σ . (3)

Both the masslessness of the πi fields and the relation (3) between the couplings κ and λ

and the sigma’s mass2 peculiar to this model stem from the spontaneous breaking down

of the O(N + 1) symmetry, which I shall explain in class later this semester. I shall also

explain the relation of this model to the approximate chiral symmetry of QCD and hence

to the real-life pi-mesons and their low-energy scattering amplitudes.
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But in this homework, you should simply take the Lagrangian (2) as it is, and explore its

implications for the scattering of π particles.

(a) Write down all the vertices and all the propagators for the Feynman rules for this

theory.

(b) Draw all the tree diagrams and calculate the tree-level scattering amplitudes of two

pions to two pions, Mtree(π
j + πk → πℓ + πm).

(c) Show that thanks to the relation (3) between the cubic and the quartic couplings,

in the low-energy limit Etot ≪ Mσ, all the amplitudes Mtree(π
j + πk → πℓ + πm)

become small as O(E2
tot/M

2
σ) or smaller.

Then use Mandelstam’s variables s, t, u to show that when any of the incoming or

outgoing pions’ energy becomes small (while the other pions’ energies are O(Mσ)),

the scattering amplitudes become small as O(Esmall/Mσ) or smaller.

Later in class, we shall learn that this behavior stems from the Goldstone–Nambu

theorem.

(d) Write down specific tree-level amplitudes, partial cross-sections (in the CM frame),

and total cross-sections for the processes

(i) π1 + π2 → π1 + π2

(ii) π1 + π1 → π2 + π2

(iii) π1 + π1 → π1 + π1

in the low-energy limit Ecm ≪ Mσ.

3. Now, a reading assignment: §4.7 of the Peskin&Schroeder textbook about the Feynman

rules of the Yukawa theory. Find out where the sign rules for the fermionic lines come

from. Also find out the origin of the Yukawa potential V (r) ∝ e−mr/r. (You can find a

shorter explanation of the Yukawa potential on the last two pages of my notes on QED

Feynman rules.
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4. Finally, an exercise in QED (Quantum Electro Dynamics). Consider the muon pair

production in electron-positron collisions, e−e+ → µ−µ+. As I explained in class, at the

tree level there is only one diagram contributing to this process,

e− e+

µ− µ+

p1 p2

p′1 p′2

q

which yields the amplitude

〈

µ−, µ+
∣

∣M
∣

∣e−, e+
〉

=
e2

s
× ū(µ−)γνv(µ+)× v̄(e+)γνu(e

−).

(4)

In class I have focused on the un-polarized cross-section for this process, but in this

exercise you should focus on the polarized amplitudes for definite helicities of all 4 particles

involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac

spinors u(e−), v(e+), u(µ−), v(µ+) all have definite chiralities,

uL ≈
√
2E

(

ξL

0

)

, uR ≈
√
2E

(

0

ξR

)

,
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√
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(

0

ηL

)
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√
2E

(
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0

)

.

(5)

cf. homework set#6, eq. (17).

(a) Show that in the approximation (5),

v̄(e+L )γνu(e
−

L ) = v̄(e+R)γνu(e
−

R) = 0, (6)

which means there is no muon pairs production unless the initial electron and positron

have opposite helicities.
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(b) Show that the µ− and the µ+ must also have opposite helicities because

ū(µ−L )γ
νv(µ+L) = ū(µ−R)γ

νv(µ+R) = 0. (7)

(c) Let’s work in the center-of-mass frame where the initial e− and e+ collide along the

z axis, pν1 = (E, 0, 0,+E), pν2 = (E, 0, 0,−E). Calculate the 4–vector v̄(e+)γνu(e−)

in this frame and show that

v̄(e+L )γνu(e
−

R) = 2E × (0,−i,+1, 0)ν , v̄(e+R)γνu(e
−

L) = 2E × (0,+i,+1, 0)ν .

(8)

(d) In the CM frame the muons fly away in opposite directions at some angle θ to the

electron / positron directions. Without loss of generality we may assume the muons’

momenta being in the xz plane, thus

p′ν1 = (E,+E sin θ, 0,+E cos θ), p′ν1 = (E,−E sin θ, 0,−E cos θ) (9)

Calculate the 4–vector ū(µ−)γνv(µ
+) for the muons and show that

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,−1,+i sin θ),

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,−1,−i sin θ).

(10)

(e) Now calculate the amplitudes (4) for all possible combinations of particles’ helicities,

calculate the partial cross-sections, and show that

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.
=

α2

4s
× (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.
=

α2

4s
× (1− cos θ)2,

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L)

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(11)

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section

for the muon pair production.

4


