PHY-396 K. Problem set #9. Due Tuesday, November 15, 2016.

1. Consider the elastic scattering e”e™ — e~e™ of ultra-relativistic electrons and positrons.
This process is called the Bhabha scattering after Homi Bhabha who has calculated the
cross-section back in 1935. His calculation was the leading order in perturbation theory;
in modern terms, it corresponds to the three-level of QED. Today, the Bhabha cross-
section is known to very high precision, so the observed rate of Bhabha scatterings at

electron-positron colliders is used to monitor the collider’s luminosity.

At the tree level of QED, there are two diagrams contributing to the Bhabha scattering,

namely

e et

(a) Evaluate the two diagrams and write down the amplitude M = M + My. Mind the

sign rules for the fermions.

Now comes the real work: calculating the un-polarized partial cross-section

do M2
()., = oo ?

where | M2 stands for | M|? summed over final particle spins and averaged over the spins

of the initial particles. Note the two diagrams (1) must be added together before squaring

the amplitude, because
Mo+ Mo = [Mi* + [Mo]® + 2Re(MiMa) # [Mi* + [Ma®.  (3)

For simplicity, assume E > m, and neglect the electron’s mass throughout your calcula-
tion. You may find it convenient to express products of momenta in terms of Mandelstam’s

variables s, ¢, and u. In the m, ~ 0 approximation, p? = p2 = p}? = piZ = m? ~ 0 while

(pipa) = (P1ph) = 3s, (piph) = (paph) =~ —3t,  (piph) = (pop)) =~ —3u. (4)



(b) Let’s start with the second diagram’s amplitude Ms. Sum / average the | Ma|? over

all spins and show that
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all spins
(c) Similarly, show that for the first diagram
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all spins

(d) Now consider the interference M7 x My between the two diagrams. Show that

1 2
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all spins 5

(e) Finally assemble all the terms together and show that for the Bhabha scattering

X = X
2s s2 x t2 4s 1 —cosf

do B a? sttt 4t B a? 3+ cos2 0\ >
dQ c.m. B .

. Next, read carefully jny notes on annihilation and Compton scattering and pay attention

to the algebra. Make sure you understand and can follow all the calculations.

. Now consider a QFT where heavy (i.e., Mg > m,) neutral scalar particles have Yukawa—
like coupling to electrons, which in turn couple to photons according to the usual QED

rules, thus
L= —{FuF" + UiP—m)¥+ [30u00% — SMIG°] + gpx WU (9)

In this theory, an electron and a positron colliding with energy E.n, > Mg may annihilate

into one photon and one scalar particle, e~ + et — v+ S.


http://www.ph.utexas.edu/~vadim/Classes/2016f/annihilation.pdf

(a) Draw tree diagrams for the e~ + et — v + S process and write down the tree-level

matrix element (75| M |e~e™).

(b) Verify the Ward identity for the photon. Note: the Ward identity does not have to

work for individual diagrams, but it must work for the net amplitude.

(c) Sum | M|? over the photon’s polarizations and average over the fermion’s spins. Show

that
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St (10)
where

A= =3 (s — me)+ mar (B -+ me) e+ me) ),

A = =3 T((f — m @+ mG A mG+mey), (1)

Ay = 3 Te((h —mo)(d + mey -+ me) @+ me)).

Since Mg > me, the initial electron and positron must be ultra-relativistic. So let’s
simplify our calculation by neglecting the electron’s mass both in the traces (11) and in

the denominators in eq. (10).

(d) Evaluate the Dirac traces (11) in the m, &~ 0 approximation and express them in

terms of the Mandelstam variables s, t, u. Show that
for Me = 0, A11 ~ AQQ ~ tu, A12 =~ (t — Mg)(u — Msz) (12)

Note: because of the scalar’s mass, the kinematic relations between various momentum
products such as (kyp+) and between the Mandelstam’s s, t, and v are different from

the eTe™ — v annihilation.

(e) Finally, assemble the net |[M|? (in the m. ~ 0 approximation), work out the kine-

matics in the CM frame, and calculate the partial cross-section

do(e” et — ~9)
d€c.m. '




