
PHY–396 K. Problem set #10. Due November 22, 2016.

1. When an exact symmetry of a quantum field theory is spontaneously broken down, it gives

rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry

was only approximate to begin with, the would-be Goldstone bosons are no longer exactly

massless but only relatively light. The best-known examples of such pseudo-Goldstone

bosons are the pi-mesons π± and π0, which are indeed much lighter then other hadrons.

The Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate

chiral isospin symmetry SU(2)L × SU(2)R ∼= Spin(4). This symmetry would be exact

if the two lightest quark flavors u and d were massless; in real life, the masses mu and

md are small but non quite zero, and the symmetry is only approximate. Somehow (and

people are still arguing how), the chiral isospin symmetry is spontaneously broken down

to the ordinary isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of the broken

Spin(4)/Spin(3) give rise to 3 (pseudo) Goldstone bosons π± and π0.

As a toy model of approximate SO(N + 1) symmetry spontaneously broken down to

SO(N), consider the linear sigma model of N + 1 scalar fields φi with the Lagrangian

L =
∑

i

1
2(∂µφi)

2 − λ

8

(∑
i
φ2i − f2

)2
+ βλf2 × φN+1 . (1)

For β = 0 this Lagrangian has exact O(N + 1) symmetry, which would be spontaneously

broken down to O(N) by non-zero vacuum expectation values of the scalar fields. For a

non-zero β, the last term in the Lagrangian (1) explicitly breaks the O(N + 1) symmetry,

but for β � f we may treat the O(N + 1) as approximate symmetry.

(a) Assume β > 0 and β � f . Show that the scalar potential of the linear sigma model

has a unique minimum at

〈φ1〉 = · · · 〈φN 〉 = 0,
〈
φN+1

〉
= f + β + O(β2/f). (2)

(b) Re-express the Lagrangian (1) in terms of the shifted fields

σ(x) = φN+1(x) −
〈
φN+1

〉
, πi(x) = φi(x) for i = 1, . . . , N. (3)

and show that the πi fields are massive but much lighter than the σ field. Specifically,
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M2
π ≈ λf × β while M2

σ ≈ λf(f + 3β) ≈ λf2 �M2
π .

In QCD terms, N = 3, the three π1,2,3 fields (or rather the π0 = π3 and the π± =

(π1 ± iπ2)/
√

2) correspond to the three pi-mesons of rather small mass mπ ≈ 140 MeV,

and the σ corresponds to the very broad sigma resonance at about 500 MeV.

(c) Now consider the pion scattering ππ → ππ in the linear sigma model. Show that

for β = 0, the quartic couplings, the cubic couplings, and the masses of the πi and

σ fields are precisely as in problem 3 of homework set#8 (eqs. (2–3)). Therefore —

as we saw in that homework — for low-energy pions with E � Mσ, the scattering

amplitudes M(πj + πk → π` + πm) become small as O(λE2
cm/M

2
σ) or smaller.

(d) For β 6= 0, the cubic coupling and the M2
σ are a bit different from what we had in

homework#8, so the several tree diagrams contributing to the scattering of low-energy

pions do not quite cancel each other.

Show that to the leading order in β, for s, t, u�Mσ,

M(πj + πk → π` + πm) ≈ 1

f2

(
(s−m2

π)× δjkδ`m + (t−m2
π)× δj`δkm

+ (u−m2
π)× δjmδk`

)
, (4)

which does not vanish when any of the pion’s momenta becomes small. Instead, for

slow pions with |p| � mπ, this amplitude becomes

M(πj +πk → π`+πm) ≈
(
3δjkδ`m − δj`δkm − δjmδk`

)
×
(
m2
π

f2
≈ λβ

f

)
6= 0. (5)

2. In this problem, the spontaneously broken symmetry is exact but more complicated. Con-

sider an N × N matrix Φ(x) of complex scalar fields Φi
j(x), i, j = 1, . . . , N . In matrix

notations, the Lagrangian is

L = tr
(
∂µΦ† ∂µΦ

)
− V (Φ†Φ) (6)

where the potential is

V =
α

2
tr
(

Φ†ΦΦ†Φ
)

+
β

2

(
tr
(

Φ†Φ
))2

+ m2 tr
(

Φ†Φ
)
. (7)
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(a) Show that this theory has global symmetry group G = SU(N)L × SU(N)R × U(1)

acting as

Φ(x) → eiθULΦ(x)U †R, UL, UR ∈ SU(N). (8)

(?) Optional exercise, only for experts in group theory:

Show that the theory has no other continuous symmetries besides G and Poincare

(Lorentz and translations of spacetime).

From now on, we take α, β > 0 but m2 < 0. In this regime, V is minimized for non-zero

vacuum expectation values 〈Φ〉 6= 0 of the scalar fields.

(b) Let (κ1, . . . , κN ) be eigenvalues of the hermitian matrix Φ†Φ. Express the potential (7)

in terms of these eigenvalues and show that the minimum lies at

κ1 = κ2 = · · · = κN = C2 =
−m2

α +Nβ
> 0. (9)

In terms of the matrix Φ, eq. (9) means Φ = C × a unitary matrix. All such minima are

related by symmetries (8) to Φ = C × the unit matrix, so without loss of generality we

may assume that the vacuum lies at

〈Φ〉 = C × 1N×N i. e.
〈
Φi
j

〉
= C × δij . (10)

(c) Show that the symmetries (8) preserving these VEVs are limited to the UL = UR ∈
SU(N) and θ = 0. In other words, the SU(N) × SU(N) × U(1) symmetry of the

theory is spontaneously broken down to SU(N).

Let’s expand the theory around the vacuum (10). For convenience, let’s also decompose

the complex matrix Φ into its hermitian and anti-hermitian parts,

Φ(x) = C × 1N×N +
ϕ1(x) + i ϕ2(x)√

2
where ϕ†1 ≡ ϕ1 and ϕ†2 ≡ ϕ2 . (11)

(d) Expand the Lagrangian in powers of ϕ1 and ϕ2 and use the quadratic part L2 to

determine the particle spectrum of the theory.
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(e) Altogether, the N2 complex scalar fields give rise to 2N2 particle species. Organize

these particles into multiplets of the unbroken SU(N) symmetry and make sure that

all members of each multiple have the same mass.

Also, check the Nambu–Goldstone theorem for this model — verify that for each

spontaneously broken generator of the symmetry (8) there is a massless particle with

similar quantum numbers (WRT the unbroken SU(N)).
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