
PHY–396 K. Problem set #11, the last set this semester! Due December 1, 2016.

• In my notations, the Aµ and their components Aaµ are the canonically normalized vector

fields, while the Aµ = gAµ and the Aaµ = gAaµ are normalized by the symmetry action.

Likewise, the tension fields Fµν and their components F aµν are canonically normalized while

the Fµν = gFµν and the Faµν = gF aµν are normalized by the symmetry action.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e., a

set of N fields (complex scalars or Dirac fermions) which transform as a complex N–vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) =
∑
j

U ij(x)Ψj(x), i, j = 1, 2, . . . , N (1)

where U(x) is an x–dependent unitary N ×N matrix, detU(x) ≡ 1. Now consider N2− 1

real fields Φa(x) forming an adjoint multiplet: In matrix form

Φ(x) =
∑
a

Φa(x)× λa

2
(2)

is a traceless hermitian N ×N matrix which transforms under the local SU(N) symmetry

according to

Φ′(x) = U(x)Φ(x)U †(x). (3)

Note that this transformation law preserves the Φ† = Φ and tr(Φ) = 0 conditions.

The covariant derivatives Dµ act on an adjoint multiplet of fields as

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x), (4)

or in components

DµΦa(x) = ∂µΦa(x) − fabcAbµ(x)Φc(x). (5)

(a) Verify that these derivatives are indeed covariant — the DµΦ(x) transforms under

the local SU(N) symmetry exactly like the Φ(x) itself.
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(b) Verify the Leibniz rule for the covariant derivatives of matrix products. Let Φ(x) and

Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ†(x) is its

hermitian conjugate (a row vector of Ψ∗i ). Show that

Dµ(ΦΞ) = (DµΦ)Ξ + Φ(DµΞ),

Dµ(ΦΨ) = (DµΦ)Ψ + Φ(DµΨ),

Dµ(Ψ†Ξ) = (DµΨ†)Ξ + Ψ†(DµΞ).

(6)

(c) Show that for an adjoint multiplet Φ(x),

[Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)] = ig[Fµν(x),Φ(x)] (7)

or in components [Dµ, Dν ]Φa(x) = −gfabcF bµν(x)Φc(x).

In class, I have argued (using covariant derivatives) that the tension fields Fµν(x) them-

selves transform according to eq. (3). In other words, the Faµν(x) form an adjoint multiplet

of the SU(N) symmetry group.

(d) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the definition

Fµν
def
= ∂µAν − ∂µAν + i[Aµ,Aν ] and from the non-abelian gauge transform formula

for the Aµ fields.

(e) Verify the Bianchi identity for the non-abelian tension fields Fµν(x):

DλFµν + DµFνλ + DνFλµ = 0. (8)

Note the covariant derivatives in this equation.

Finally, consider the SU(N) Yang–Mills theory — the non-abelian gauge theory that does

not have any fields except Aa(x) and Fa(x); its Lagrangian is

LYM = − 1

2g2
tr
(
FµνFµν

)
=
∑
a

−1
4 F

a
µνF

aµν . (9)

(f) Show that the Euler–Lagrange field equations for the Yang–Mills theory can be written

in covariant form as DµFµν = 0.

Hint: first show that for an infinitesimal variation δAµ(x) of the non-abelian gauge

fields, the tension fields vary according to δFµν(x) = DµδAν(x)−DνδAµ(x).
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2. Continuing the previous problem, consider an SU(N) gauge theory in which N2−1 vector

fields Aaµ(x) interact with some “matter” fields φα(x),

L = − 1

2g2
tr
(
FµνFµν

)
+ Lmat(φ,Dµφ). (10)

For the moment, let me keep the matter fields completely generic — they can be scalars,

or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)

symmetry as long as such multiplet is complete and non-trivial. All we need to know right

now is that there are well-defined covariant derivatives Dµφ that depend on the gauge

fields Aaµ, which give rise to the currents

Jaµ = −∂Lmat

∂Aaµ
. (11)

Collectively, these N2− 1 currents should form an adjoint multiplet Jµ =
∑

a(
1
2λ

a)Jaµ of

the SU(N) symmetry.

(a) Show that in this theory the equation of motion for the Aaµ fields are DµF
aµν = Jaν

and that consistency of these equations requires the currents to be covariantly con-

served,

DµJ
µ = ∂µJ

µ + ig[Aµ, J
µ] = 0, (12)

or in components,

DµJ
µa = ∂µJ

aµ − gfabcAbµJ
cµ = 0. (13)

Note: a covariantly conserved current does not lead to a conserved charge,

(d/dt)
∫
d3x Ja0(x, t) 6= 0!

Now consider a simple example of matter fields — a fundamental multiplet Ψ(x) of N

Dirac fermions Ψi(x), with a Lagrangian

Lmat = Ψ
(
iγµDµ − m)Ψ, Lnet = Lmat −

1

2g2
tr
(
FµνFµν

)
. (14)

(b) Derive the SU(N) currents Jaµ for these fermions and verify that under the SU(N)

symmetries they transform covariantly into each other as members of an adjoint mul-

tiplet. That is, the N ×N matrix Jµ =
∑

a(
1
2λ

a)Jaµ transforms according to eq. (3).
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Hint: for any complex N–vectors ξi and ηj ,

∑
a

(
η†λaξ

)
×
(
λa
)i
j

= 2 η∗j ξ
i − 2

N

(
η†ξ
)
×δij .. (15)

(c) Finally, verify the covariant conservation DµJ
aµ = 0 of these currents when the

fermionic fields Ψi(x) and Ψi(x) obey their equations of motion.

3. This problem is about general multiplets of general gauge groups. Consider a Lie group G

with generators T̂ a obeying commutation relations [T̂ a, T̂ b] = ifabcT̂ c. Under an infinites-

imal local symmetry

G(x) = 1 + iΛa(x)T̂ a + · · · , infinitesimal Λa(x), (16)

the gauge fields Aaµ(x) transform as

Aaµ(x) → Aaµ(x) − DµΛa(x) = Aaµ(x) − ∂µΛa(x) − fabcΛb(x)Acµ(x). (17)

Other fields of the gauge theory (scalar, spinor, or whatever) must form complete mul-

tiplets of the gauge group G. In any such multiplet (m), the generators T̂ a are repre-

sented by the size(m)×size(m) matrices (T a(m))
α
β satisfying similar commutation relations,

[T a(m), T
b
(m)] = ifabcT c(m). The fields Ψα(x) belonging to such a multiplet transform under

infinitesimal gauge transforms (16) as

Ψα(x) → Ψα(x) + iΛa(x)(T a(m))
α
βΨβ(x), (18)

and the covariant derivatives Dµ act on these fields as

DµΨα(x) = ∂µΨα(x) + iAaµ(x)(T a(m))
α
βΨβ(x). (19)

Note different matrices T a(m) in the covariant derivatives of fields belonging to different

multiplet (m). But the gauge fields Aaµ are the same for all the matter fields of the same

gauge theory!
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• Verify covariance of the derivatives (19) under infinitesimal gauge transforms (16).

◦ The derivatives (19) are covariant under any gauge transformations, infinitesional of

finite. But proving the covariance under the finite gauge transforms is much harder,

so your homework is limited to the infinitesimal case.

4. In the previous homework (set#10, problem#2), we had continuous global symmetry

G = SU(N)L × SU(N)R × U(1) spontaneously broken down to H = SU(N)V . Now let’s

gauge the entire SU(N)L×SU(N)R×U(1) symmetry and work out the Higgs mechanism.

The present theory comprises N2 complex scalar fields Φ j
i (x) organized into an N × N

matrix, and 2N2 − 1 real vector fields Bµ(x), Laµ(x), and Raµ(x), the latter organized into

traceless hermitian matrices Lµ(x) =
∑

a L
a
µ(x) × 1

2λ
a and Rµ(x) =

∑
aR

a
µ(x) × 1

2λ
a,

where a = 1, . . . , (N2− 1) and λa are the Gell-Mann matrices of SU(N). The Lagrangian

is

L = −1
4BµνB

µν − 1
2 tr (LµνL

µν) − 1
2 tr (RµνR

µν) + tr
(
DµΦ†DµΦ

)
− V (Φ†Φ), (20)

where

Bµν = ∂µBν − ∂νBµ ,

Lµν = ∂µLν − ∂νLµ + ig[Lµ, Lν ],

Rµν = ∂µRν − ∂νRµ + ig[Rµ, Rν ],

DµΦ = ∂µΦ + ig′BµΦ + igLµΦ − igΦRµ ,

DµΦ† = (DµΦ)† = ∂µΦ† − ig′BµΦ† + igRµΦ† − igΦ†Lµ .

(21)

For simplicity, I assume equal gauge couplings gL = gR = g for the two SU(N) factors of

the gauge group, but the abelian coupling g′ is different.

The scalar potential V is precisely as in the previous homework,

V =
α

2
tr
(
Φ†ΦΦ†Φ

)
+

β

2
tr2
(
Φ†Φ

)
+ m2 tr

(
Φ†Φ

)
, α, β > 0, m2 < 0, (22)

hence similar VEVs of the scalar fields: up to a gauge symmetry,

〈Φ〉 = C × 1N×N where C =

√
−m2

α +Nβ
, (23)
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which breaks the G = SU(N)L × SU(N)R × U(1) symmetry down to the SU(N)V sub-

group.

(a) The Higgs mechanism makes N2 out of 2N2− 1 vector fields massive. Calculate their

masses by plugging 〈Φ〉 for the Φ(x) into the tr(DµΦ†DµΦ) term of the Lagrangian.

In particular, show that the abelian gauge field Bµ and the Xa
µ = 1√

2
(Laµ − Raµ)

combinations of the SU(N) gauge fields become massive, while the V a
µ = 1√

2
(Laµ+Raµ)

combinations remain massless.

(b) Find the effective Lagrangian for the massless vector fields V a
µ (x) by freezing all

the other fields, i.e. setting Bµ(x) ≡ 0, Xa
µ(x) ≡ 0, and Φ(x) ≡ 〈Φ〉. Show that

this Lagrangian describes a Yang–Mills theory with gauge group SU(N)V and gauge

coupling gV = g/
√

2.

? For extra challenge, allow for un-equal gauge coulings gL 6= gR. Find which combi-

nations of the Laµ(x) and Raµ(x) fields remain massless in this case, then derive the

effective Lagrangian for these massless fields by freezing everything else. As in part

(b), you should get an SU(N) Yang–Mills theory, but this time the gauge coupling is

gv =
gLgR√
g2L + g2R

. (24)
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