
PHY–396 L. Problem set #19. Due April 6, 2017.

1. First, a reading assignment on renormalization. In class I have explained the MS renor-

malization scheme and gave you formulae for the β-functions in terms of the residues of

simple 1/ε poles of the counterterms, see pages 1–7 of my notes. Please read the rest of

these notes (pages 8–14) where I prove those formulae and also derive a recursive relation

for the higher-order poles 1/ε2, 1/ε3, etc., in terms of the simmple poles.

2. Second, another reading assignment: my notes about properly discretized path integral

for the harmonic oscillator.

3. Third, a simple exercise in using path integrals. Consider a 1D particle living on a circle of

radius R, or equivalently a 1D particle in a box of length L = 2πR with periodic boundary

conditions where moving past the x = L point brings you back to x = 0. In other words,

the particle’s position x(t) is defined modulo L.

The particle has no potential energy, only the non-relativistic kinetic energy p2/2M .

(a) As a particle moves from some point x1 (mod L) at time t1 = 0 to some other point

x2 (mod L) at time t2 = T , it may travel directly from x1 to x2, or it may take a

few turns around the circle before ending at the x2. Show that the space of all such

paths on a circle is isomorphic to the space of all paths on an infinite line which begin

at fixed x1 at time t1 and end at time t2 at any one of the points x′2 = x2 +nL where

n = 0,±1,±2, . . . is any whole number.

Then use path integrals to relate the evolution kernels for the circle and for the infinite

line (over the same time interval t2 − t1 = T ) as

Ucircle(x2;x1) =
+∞∑

n=−∞
Uline(x2 + nL;x1). (1)
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The next question uses Poisson’s resummation formula: If a function F (n) of integer n

can be analytically continued to a function F (ν) of arbitrary real ν, then

+∞∑
n=−∞

F (n) =

∫
dν F (ν)×

+∞∑
n=−∞

δ(ν − n) =
+∞∑
`=−∞

∫
dν F (ν)× e2πi`ν . (2)

(b) The free particle living on an infinite 1D line has evolution kernel

Uline(x2;x1) =

√
M

2πih̄T
× exp

(
+
iM(x2 − x1)2

2h̄T

)
. (3)

Plug this free kernel into eq. (1) and use Poisson’s formula to sum over n.

(c) Verify that the resulting evolution kernel for the particle one the circle agrees with

the usual QM formula

Ubox(x2;x1) =
∑
p

L−1/2eipx2/h̄ × e−iT (p2/2M)/h̄ × L−1/2e−ipx1/h̄ (4)

where p takes circle-quantized values

p =
2πh̄

L
× integer. (5)

4. Finally, let’s prove the Mermin–Wagner–Coleman theorem, which forbids spontaneous

breaking of a continuous symmetry in D ≤ 2 dimensions (Minkowski or Euclidean).

Consider a QFT (in any dimenssion D) with a global U(1) phase symmetry, a comples

field Φ(x) which transforms into eiθΦ(x), and the effective scalar potential which has a

degenerate ring of minima at Φ = Aeiφ (fixed radius A > 0, any phase φ). In polar

coordinates (ρ, φ) for the Φ field, the radial field δρ(x) = ρ(x) − A is massive while the

angular direction φ(x) is massless, so the effective low-energy theory has only the massive

φ(x) field.
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(a) In terms of the angular φ(x) field, the U(1) phase symmetry acts as a shift symmetry:

φ′(x) = φ(x) + θ. Show that the only relevant or marginal operator which respects

this shift symmetry (as well as the Lorentz or Euclidean symmetry in D dimensions)

is the kinetic energy operator (∂µφ)2. Thus, at low energies the φ(x) field is free and

massless, and its Lagrangian is

L =
B

2
× (∂µφ)2 + nothing else (6)

for some constant B > 0. (Classically B = 2A2, but it’s subject to quantum correc-

tions.)

(b) Next, use path integrals to show that for a free massless scalar field φ(x) with La-

grangian (6),

〈Ω|T exp(+iφ(x)) exp(−iφ(y)) |Ω〉 = exp

(
G0(x− y) − G0(0)

B

)
(7)

where G0(x− y) is the Feynman propagator of a massless scalar.

(c) Now use parts (a) and (b) to show that at long distances x− y →∞,

〈ω|TΦ(x)Φ∗(y) |ω〉 = C2 × exp

(
G0(x− y)

B

)
(8)

for some positive constant C2 > 0.

For a massless free scalar field, the coordinate-space formula for the propagator is fairly

simple: In D Euclidean dimensions,

G0(x− y) ≡
∫

ddpE
(2π)d

eip(x−y)

p2
E

=


Γ
(
D
2 − 1

)
4πD/2

× |x− y|2−D for D 6= 2,

const − 1

2π
× log |x− y| for D = 2.

(9)

(d) Finally, use eqs. (8), (9), and the cluster expansion to argue that in D > 2 dimensions

〈Φ〉 6= 0 and the U(1) symmetry is spontaneously broken but in D ≤ 2 dimensions

〈Φ〉 = 0 and the U(1) symmetry remains unbroken.
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