
PHY–396 L. Problem set #23. Due May 4, 2013.

1. The fπ ≈ 93 MeV is called the pion decay constant because it controls the decay rate of

the charged pions, mostly into muons and neutrinos, π+ → µ+νµ and π− → µ−ν̄µ. In

this problem, we shall learn how this works.

The weak interactions at energies O(Mπ) ≪ MW are governed by the Fermi’s current-

current effective Lagrangian

L = −2
√
2GFJ

+α
L J−

Lα (1)

where L±α
L = 1

2
(J±α

V − J±α
A ) are the left-handed charged currents. In terms of the quark

and lepton fields,

J+α
L = 1

2
Ψ(νµ)(1− γ5)γαΨ(µ) + cos θc × 1

2
Ψ(u)(1− γ5)γαΨ(d) + · · · ,

J−α
L = 1

2
Ψ(µ)(1− γ5)γαΨ(νµ) + cos θc × 1

2
Ψ(d)(1− γ5)γαΨ(u) + · · · ,

(2)

where the · · · stand for terms involving other fermions of the Standard Model, and θc ≈
13◦ is the Cabibbo angle.

For the pion decay process, the axial part one of the currents annihilates the charged pion

〈vacuum|Ψdγ
5γαΨu

∣

∣π+(p)
〉

= 〈vacuum|Ψuγ
5γαΨd

∣

∣π−(p)
〉

= fπ × pα (3)

while the other current creates the lepton pair.

(a) Show that the tree-level pion decay amplitude is

M(π+ → µ+νµ) = Gffπ cos θc × pα(π)× ū(νµ)(1− γ5)γαv(µ
+). (4)

(b) Sum over the fermion spins and calculate the decay rate Γ(π+ → µ+νµ). FYI,

fπ ≈ 93 MeV, Mπ ≈ 140 MeV, Mµ ≈ 106 MeV, and GF ≈ 1.17 · 10−5GeV−2.

(c) The charged pions decay to muons much more often than they decay to electrons,

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

M2
e

M2
µ

(1− (Me/Mπ)
2)2

(1− (Mµ/Mπ)2)2
≈ 1.2 · 10−4. (5)

Derive this formula, then explain this preference for the heavier final-state lepton in

terms of mis-matched helicity and chirality of the charged lepton.
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The rest of this homework concerns the axial anomaly in gauge theories.

2. Consider the axial anomaly in a non-abelian gauge theory, for example QCD with Nf

massless quark flavors,

Jµ
A =

∑

i,f

Ψifγ
5γµΨif , ∂µJ

µ
A = −Nfg

2

16π2
ǫαβµν tr

(

FαβFµν

)

(6)

where Fµν is the non-abelian gauge field strength.

(a) Expand the right hand side of eq. (6) into 2–gluon, 3–gluon, and 4–gluon terms and

show that the 4–gluon term vanishes identically.

Hint: Use the cyclic symmetry of the trace.

The two-gluon anomaly term obtains from the triangle diagrams

b

b

b

b + gluon permutation. (7)

This works exactly as discussed in class for the QED, except in QCD we should trace

FαβFγδ over the quark colors. But in QCD there is also the three-gluon anomaly (cf.

part (a)) which obtains from the quadrangle diagrams

b

b

b

b

b + gluon permutations. (8)

(b) Evaluate the quadrangle diagrams using the Pauli–Villars regularization and derive

the three-gluon anomaly in QCD. Note that for the regulators

1

6p−M
γ5 6q 1

6p+ 6q −M
= γ5

(

1

6p+ 6q −M
− 1

6p−M

)

− 2Mγ5
1

6p−M

1

6p+ 6q −M
.

(9)
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3. Next, a reading assignment: §22.2–3 of Weinberg about the chiral anomaly. Pay partic-

ular attention to the Jacobian of the fermion path integral and to regularization of the

functional trace.

4. In any even spacetime dimension d = 2n, a massless Dirac fermion has an axial symmetry

Ψ(x) → exp(iθΓ)Ψ(x) where Γ generalizes the γ5. Classically, the axial current Jµ
A =

ΨΓγµΨ is conserved, but when the fermion is coupled to a gauge field — abelian or

non-abelian — the axial symmetry is broken by the anomaly and

∂µJ
µ
A = − 2

n!

( g

4π

)n

ǫα1β1α2β2···αn
β
n tr

(

Fα
1
β
1
Fα

2
β
2
· · ·Fαnβn

)

. (10)

Generalize Weinberg’s calculation of the anomaly via Jacobian of the fermionic path

integral to any even spacetime dimension d = 2n.

For your information, in 2n Euclidean dimensions {γµ, γν} = +2δµν , Γ = in−2γ1γ2 · · · γ2n,
{Γ, γµ} = 0, Γ2 = +1, and for any 2n = d matrices γα, . . . , γω, tr(Γγαγβ · · · γω) =

2ni2−nǫαβ···ω.
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