QED Feynman Rules in the Counterterm Perturbation Theory

The simplest version of QED (Quantum ElectroDynamics) has only 2 field types — the electromagnetic field A^{μ} and the electron field Ψ — and its physical Lagrangian is

$$\mathcal{L}_{\text{phys}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\Psi}(i\gamma^{\mu}D_{\mu} - m_e)\Psi = -\frac{1}{4}F_{\mu\nu}^2 + \overline{\Psi}(i\partial \!\!\!/ - m)\Psi + eA_{\mu}\overline{\Psi}\gamma^{\mu}\Psi.$$
 (1)

The bare Lagrangian of the perturbation theory has a similar form, except for the bare coupling e_{bare} instead of the physical coupling e, the bare electron mass m_{bare} instead of the physical mass m, and the bare fields $A_{\text{bare}}^{\mu}(x)$ and $\Psi_{\text{bare}}(x)$ instead of the renormalized fields $A^{\mu}(x)$ and $\Psi(x)$. By convention, the fields strength² factors Z for the EM and the electron fields are called respectively the Z_3 and the Z_2 , while the Z_1 is the electric charge renormalization factor. Thus,

$$A_{\text{bare}}^{\mu}(x) = \sqrt{Z_3} \times A^{\mu}(x), \qquad \Psi_{\text{bare}}(x) = \sqrt{Z_2} \times \Psi(x),$$
 (2)

and plugging these bare fields into the bare Lagrangian we obtain

$$\mathcal{L}_{\text{bare}} = -\frac{Z_3}{4} F_{\mu\nu} F^{\mu\nu} + Z_2 \overline{\Psi} (i \partial \!\!\!/ - m_{\text{bare}}) \Psi + Z_1 e \times A_\mu \overline{\Psi} \gamma^\mu \Psi$$
 (3)

where

$$Z_1 \times e = Z_2 \sqrt{Z_3} \times e_{\text{bare}}$$
 (4)

by definition of the Z_1 .

As usual in the counterterm perturbation theory, we split

$$\mathcal{L}_{\text{bare}} = \mathcal{L}_{\text{phys}} + \mathcal{L}_{\text{terms}}^{\text{counter}}$$
 (5)

where the physical Lagrangian \mathcal{L}_{phys} is exactly as in eq. (1) while the counterterms comprise the difference. Specifically,

$$\mathcal{L}_{\text{terms}}^{\text{counter}} = -\frac{\delta_3}{4} \times F_{\mu\nu} F^{\mu\nu} + \delta_2 \times \overline{\Psi} i \partial \Psi - \delta_m \times \overline{\Psi} \Psi + e \delta_1 \times A_{\mu} \overline{\Psi} \gamma^{\mu} \Psi$$
 (6)

for

$$\delta_3 = Z_3 - 1, \quad \delta_2 = Z_2 - 1, \quad \delta_1 = Z_1 - 1, \quad \delta_m = Z_2 m_{\text{bare}} - m_{\text{phys}}.$$
 (7)

Actually, the bare Lagrangian (5) is not the whole story, since in the quantum theory

the EM field $A^{\mu}(x)$ needs to be gauge-fixed. In the Feynman gauge, or in similar Lorentz-invariang gauges, the gauge fixing amounts to adding an extra gauge-symmetry breaking term to the Lagrangian,

$$\mathcal{L}_{\text{bare}} = \mathcal{L}_{\text{phys}} + \mathcal{L}_{\text{fixing}}^{\text{gauge}} + \mathcal{L}_{\text{terms}}^{\text{counter}}$$
 (8)

for

$$\mathcal{L}_{\text{fixing}}^{\text{gauge}} = -\frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} \right)^2 \tag{9}$$

where ξ is a constant parametrixing a specific gauge. In the Feynman gauge $\xi = 1$.

In the counterterm perturbation theory, we take the free Lagrangian to be the quadratic part of the physical Lagrangian plus the gauge fixing term, thus

$$\mathcal{L}_{\text{free}} = \overline{\Psi}(i \partial \!\!\!/ - m) \Psi - \frac{1}{4} F_{\mu\nu}^2 - \frac{1}{2\xi} (\partial_{\mu} A^{\mu})^2$$
 (10)

(where m is the physical mass of the electron), while all the other terms in the bare Lagrangian — the physical coupling $eA_{\mu}\overline{\Psi}\gamma^{\mu}\Psi$ and all the counterterms (6) — are treated as perturbations. Consequently, the QED Feynman rules have the following propagators and vertices:

• The electron propagator

$$\frac{\alpha}{p} = \left[\frac{i}{\not p - m + i0}\right]_{\alpha\beta} = \frac{i(\not p + m)_{\alpha\beta}}{p^2 - m^2 + i0} \tag{11}$$

where α and β are the Dirac indices, usually not written down.

• The photon propagator

$$\begin{array}{ccc}
\mu & \nu & -i \\
k & k^2 + i0
\end{array} \times \left(g^{\mu\nu} + (\xi - 1)\frac{k^{\mu}k^{\nu}}{k^2 + i0}\right).$$
(12)

In the Feynman gauge $\xi = 1$ this propagator simplifies to

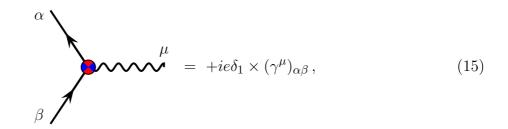
$$\overset{\mu}{\sim} \underset{k}{\sim} \overset{\nu}{\sim} = \frac{-ig^{\mu\nu}}{k^2 + i0}.$$
(13)

• The physical vertex



The Dirac indices α and β of the fermionic lines are usually not written down.

\star And then there are three kinds of the counterterm vertices:



$$\frac{\alpha}{} = +i(\delta_2 \times \not p - \delta_m)_{\alpha\beta}, \qquad (16)$$

$$\mu \qquad \qquad \nu = -i\delta_3 \times \left(g^{\mu\nu}k^2 - k^{\mu}k^{\nu}\right). \tag{17}$$