
Solutions for exercises in my notes about finite multiplets of the Spin(3, 1) ∼= SL(2,C)

group, the double cover of the continuous Lorentz group SO+(3, 1).

Problem 1:

The lorentz generators Ĵ and K̂ obey commutation relations[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (S.1)
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Ĵ i±, Ĵ
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Ĵ i, Ĵj
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(S.2)

Problem 2:

In homework#6 [solutions], problem 2(a) we saw that in the Weyl basis for Dirac sponors,

the Lorentz generators are represented by

JD =

(
1
2
σσ 0

0 1
2
σσ

)
, KD =

(
− i

2
σσ 0

0 + i
2
σσ

)
. (S.3)

Decomposing these Dirac-spinor representations of the Lorentz generators into the irreducible

Weyl-spinor representations, we find that

For the LH Weyl spinor, J = 1
2
σσ, K = − i

2
σσ,

exactly as for the (j+ = 1
2 , j− = 0) multiplet, (S.4)

For the RH Weyl spinor, J = 1
2
σσ, K = + i

2
σσ,

exactly as for the (j+ = 0, j− = 1
2) multiplet. (S.5)

Quod erat demonstrandum.
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Problem 3:

A finite continuous Lorentz is a combination of a Boost and a rotation of space, hence in a

Lorentz multiplet m it is represented by the matrix

Mm = exp
(
−ia · Jm − −ib ·Km

)
(S.6)

where Jm and Km represent the Lorentz generators Ĵ and K̂ in the multiplet m, while the

3-vectors a and b parametrize the rotation and the boost. In particular, for the LH and the

RH Weyl spinor multiplets,

−ia · J − ib ·K = 1
2(−ia∓ b) · σσ, (S.7)

hence

ML = exp
(
1
2(−ia− b) · σσ

)
, MR = exp

(
1
2(−ia + b) · σσ

)
. (S.8)

Since the Paili matrices are traceless, both of these matrix exponentials have unit determi-

nants. Indeed, for any complex 3–vector c, tr(c · σσ) = 0, hence

det
(
exp(c · σσ)

)
= exp

(
tr(c · σσ)

)
= exp(0) = 1. (S.9)

Problem 4:

Let’s start with reality. The matrix V = V µσµ is hermitian if and only if the 4-vector V µ is

real. For any matrix M ∈ SL(2,C), the transform

V → V ′ = MVM † (S.10)

preserves hermiticity: if V is hermitian, then so is V ′; indeed

(
V ′
)†

=
(
MVM †

)†
=
(
M †
)†
V †M † = MVM † = V ′. (S.11)

In terms of the 4-vectors, this means that if the V µ is real than the V ′µ = LµνV
ν is also real.

In other words, the 4× 4 matrix Lµν(M) is real.
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Next, let’s prove that Lµν(M) ∈ O(3, 1) — it preserves the Lorentz metric gαβ, or

equivalently, for any V µ, gαβV ′αV
′
β = gαβVαVβ. In terms of the 2× 2 matrix V = V µσµ, the

Lorentz square of the 4-vector becomes the determinant:

gαβVαVβ = det
(
V = Vµσ

µ
)
. (S.12)

Indeed, from the explicit form of the 4 matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0

0 −1

)
(S.13)

we have

V = V µσµ =

(
V0 + V3 V1 − iV2

V1 + iV2 V0 − V3

)

and hence

det(V ) = (V0 +V3)(V0−V3) − (V1− iV2)(V1 + iV2) = V 2
0 − V 2

3 − V 2
1 − V 2

2 = gαβVαVβ .

(S.14)

The determinant of a matrix product is the product of the individual matrices’ determi-

nants. Hence, for the transform (S.10),

det(V ′) = det(M)× det(V )× det(M †) = det(V )× |det(M)|2 . (S.15)

The M matrices of interest to us belong to the SL(2,C) group — they are complex matrices

with units determinants. There are no other restrictions, but det(M) = 1 is enough to assure

det(V ′) = det(V ), cf. eq. (S.15). Thanks to the relation (S.12), this means

gαβV ′αV
′
β = det(V ′) = det(V ) = gαβVαVβ (S.16)

— which proves that the matrix Lµν(M) is indeed Lorentzian.
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To prove that the Lorentz transform Lµν(M) is orthochronous, we need to show that for

any Vµ in the forward light cone — V 2 > 0 and V0 > 0 — the V ′µ is also in the forward

light cone. In matrix terms, V 2 > 0 and V0 > 0 mean det(V ) > 0 and tr(V ) > 0; together,

these two conditions means that the 2 × 2 hermitian matrix V is positive-definite. The

transform (S.10) preserves positive definiteness: if for any complex 2-vector ξ 6= 0 we have

ξ†V ξ > 0, then

ξ†V ′ξ = ξ†MVM †ξ = (M †ξ)†V (M †ξ) > 0. (S.17)

(Note that M †ξ 6= 0 for any ξ 6= 0 because det(M) 6= 0.) Thus, for any M ∈ SL(2,C) the

Lorentz transform V µ → V ′µ preserves the forward light cone — in other words, the Lµν(M)

is orthochronous, Lµν(M) ∈ O+(3, 1).

Problem 4?:

The simplest proof that the Lorentz transform (8) is proper — det(L) = +1 — for any

SL(2,C) matrix M is topological: The SL(2,C) group manifold — which spans all matrices

of the form

M =

(
a b

c d

)
, complex a, b, c, d, ad − bc = 1 (S.18)

is connected, so all such matrices are continuously connected to the 12×2 matrix. It is easy

to see that for M = 1, the Lorentz transform L(1) is trivial, Lµν = δµν , hence all Lorentz

transfroms of the form (8) are continuously connected to the trivial transform. Consequently,

they all must be continuous Lorentz transfroms and therefore proper and orthochronous.

There are other proofs not involving the topology, but they rely on the problems 5 and 6

of these notes, as well as problem 2(b) from the homework#6. I shall present one sich proof

after the solutions to problems 5 and 6.

Problem 5:

Let L1 = L(M1), L2 = L(M2) and L12 = L(M2M1) be Lorentz transforms constructed

according to eq. (8) for some SL(2,C) matrices M1 and M2 and their product M2M1. We

want to prove that L12 = L2L1, so consider how these transforms act on some 4–vector V µ.
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On one hand,

(
L12V

)ν
σν = (M2M1)× (V νσν)× (M2M1)

† = M2M1 × (V νσν)×M †1M
†
2 . (S.19)

On the other hand,

(
L2L1V

)ν
σν = M2 ×

(
(L1V )νσν

)
×M †2 = M2 ×

(
M1 × (V νσν)×M †1

)
×M †2

also = M2M1 × (V νσν)×M †1M
†
2 .

Thus we see that (
L12V

)ν
σν =

(
L2L1V

)ν
σν (S.20)

and therefore (
L12V

)ν
=
(
L2L1V

)ν
. (S.21)

Moreover, this holds true for any 4–vector V µ, hence the Lorentz transforms L12 = L(M2M1)

and L2L1 = L(M2)L(M1) must be equal to each other, quod erat demonstrandum.

Problem 6:

Lemma 1: any SL(2,C) matrix M may be written as a product M = HU of an hermitian

matrix H and a unitary matrix U , both having determinant = 1.

Proof: The matrix MM † is hermitian, positive definite, and has determinant = 1 (since

det(M) = 1), so let H be the positive square root H =
√
MM † =⇒ H = H† and

det(H) = 1. Let U = H−1M , then

UU † = H−1M ×M †H−1 = H−1 ×
(
MM † = H2

)
×H−2 = 1, (S.22)

so U is unitary, and also det(U) = det(M)/ det(H) = 1.
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Lemma 2: For a unitary matrix U , the Lorentz transform L(U) is a rotation of space which

does not affect the time. Also, the Weyl spinor representations of this rotations are simply

ML

(
L(U)

)
= MR

(
L(U)

)
= U. (S.23)

Proof: And SL(2,C) matrix which happens to be unitary is an SU(2) matrix, and any such

SU(2) matrix can be written as

U = exp
(
− i

2 θ n · σσ
)

(S.24)

for some angle θ and a unit 3–vector n. Consequently, by the Cayley–Klein formula

U × σi × U † = R j
i (θ,n)σj (S.25)

where R j
i (θ,n) is the 3× 3 matrix of a space rotation through angle θ around axis n, while

U × σ0 × U † = UU † = 1 = σ0. (S.26)

Therefore, the Lorentz transform L(U) defined according to eq. (8) is the purely spatial

rotation R(θ,n). Moreover, as we saw in homework#6 (problem 2(b)), the Weyl spinor

representations of this rotations are precisely

ML(R) = MR(R) = exp
(
− i

2 θ n · σσ
)

= U, (S.27)

quod erat demonstrandum.

Lemma 3: For an Hermitian matrix H, the transform L(H) is a pure Lorentz boost (without

a rotation). Also, the Weyl spinor representations of this boost are

ML

(
L(H)

)
= H, MR

(
L(H)

)
= H−1. (S.28)

Proof: Suppose an SL(2,C) matrix H happens to be Hermitian. Then the eigenvalues of

H are either both positive or both negative (since their product is det(H) = 1), so either H
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or −H is positive definite. Let’s take the log of the positive-definite ±H, then this log is a

traceless hermitian 2× 2 matrix. Indeed,

tr
(
log(±H)

)
= log

(
det(±H)

)
= log(1) = 0. (S.29)

Consequently, this traceless log is a real linear combination of the Pauli matrices,

log(±H) = −1
2 r · σσ =⇒ H = ± exp(−1

2 r · σσ) (S.30)

for some real 3–vector r. Let r be its magnitude while n is its direction, then

H = ± cosh(r/2) ∓ sinh(r/2) (n · σσ). (S.31)

Consequently, after some algebra we obtain

H × σ0H = cosh(r)σ0 + sinh(r) (n · σσ), (S.32)

H × (n · σσ)×H = cosh(r) (n · σσ)σ0 + sinh(r)σ0, (S.33)

while for v ⊥ n,

H × (v · σσ)×H = (v · σσ), (S.34)

which means that the Lorentz transform L(H) defined according to eq. (8) is a pure boost

of rapidity r in the direction n. Moreover, as we saw in homework#6 (problem 2(b)), the

Weyl spinor representations of this boost are precisely

ML(R) = exp
(
−1

2 θ n · σσ
)

= H,

MM (R) = exp
(
+1

2 θ n · σσ
)

= H−1,
(S.35)

quod erat demonstrandum.
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Summary: Now that we have proven all these lemmas, the proof for a most general SL(2,C)

matrix M follows via the group law L(M2M1) = L(M2)L(M1), cf. problem 5.

Indeed, by Lemma 1, any M ∈ SL(2,C) is a product M = HU of an hermitian matrix

H and a unitary matrix U . By the group law,

L(M) = L(H)× L(U), (S.36)

hence in any Lorentz multiplet m,

Mm

(
L(M)

)
= Mm

(
L(H)

)
×Mm

(
L(U)

)
. (S.37)

Moreover, by Lemmas 2 and 3, L(U) is a rotation while L(H) is a boost, and their LH Weyl

spinor representations are simply

ML

(
L(U)

)
= U, ML

(
L(H)

)
= H. (S.38)

Consequently

ML

(
L(M)

)
= H × U = M. (S.39)

Likewise, the RH spinor representations of the L(U), L(H) and L(M) matrices are

MR

(
L(U)

)
= U, MR

(
L(H)

)
= H−1, (S.40)

and hence

MR

(
L(M)

)
= H−1U. (S.41)

Finally, in problem 2(d) of the homework#6 we saw that

σ2U
∗σ2 =

(
U−1

)†
= U, σ2H

∗σ2 =
(
H−1

)†
= H−1, (S.42)

and hence

M
def
= σ2M

∗σ2 = σ2H
∗σ2 × σ2U∗σ2 = H−1 × U, (S.43)

therefore

MR

(
L(M)

)
= H−1U = M. (S.44)

Quod erat demonstrandum.
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Problem 4∗, a non-topological solution:

Let’s use the Lemmas 1–3 from the above solutions to problem 6. By Lemma 1, any SL(2,C)

matrix M decomposes into M = H × U where U is unitary and H is hermitian, and by

Lemmas 2 and 3, L(H) is a pure boost while L(U) is a pure rotation of space. Both boost

and rotations are proper Lorentz transforms, hence

L(M) = L(H)× L(U) (S.45)

must also be a proper Lorentz transform.

Problem 7:

For any Lie algebra equivalent to an angular momentum or its analytic continuation, the

product of two doublets comprises a triplet and a singlet, 2⊗ 2 = 3⊕ 1, or in (j) notations,

(12) ⊗ (12) = (1) ⊕ (0). Furthermore, the triplet 3 = (1) is symmetric with respect to

permutations of the two doublets while the singlet 1 = (0) is antisymmetric.

For two separate and independent types of angular momenta J+ and J− we combine the

j+ quantum numbers independently from the j− and the j− quantum numbers independently

from the j+. For two bi-spinors, this gives us

(12 ,
1
2)⊗ (12 ,

1
2) = (1, 1)⊕ (1, 0)⊕ (0, 1)⊕ (0, 0). (S.46)

Furthermore, the symmetric part of this product should be either symmetric with respect to

both the j+ and the j− indices or antisymmetric with respect to both indices, thus

[
(12 ,

1
2)⊗ (12 ,

1
2)
]
sym

= (1, 1)⊕ (0, 0). (S.47)

Likewise, the antisymmetric part is either symmetric with respect to the j+ but antisym-

metric with respect to the j− or the other way around, thus

[
(12 ,

1
2)⊗ (12 ,

1
2)
]
antisym

= (1, 0)⊕ (0, 1). (S.48)

From the SO+(3, 1) point of view, the bi-spinor (12 ,
1
2) is the Lorentz vector. A general

2-index Lorentz tensor transforms like a product of two such vectors, so from the SL(2,C)
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point of view it’s a product of two bi-spinors, which decomposes to irreducible multiplets

according to eq. (S.46).

The Lorentz symmetry respects splitting of a general 2-index tensor into a symmetric

tensor Tµν = +T νµ and an asymmetric tensor Fµν = −F νµ. The symmetric tensor corre-

sponds to a symmetrized square of a bi-spinor, which decomposes into irreducible multiplets

according to eq. (S.47). The singlet (0, 0) component is the Lorentz-invariant trace Tµµ while

the (1, 1) irreducible multiplet is the traceless part of the symmetric tensor.

Likewise, the antisymmetric Lorentz tensor Fµν = −F νµ decomposes according to

eq. (S.48). Here, the irreducible components (1, 0) and (0, 1) are complex but conjugate

to each other; individually, they describe antisymmetric tensors subject to complex duality

conditions 1
2ε
κλµνFµν = ±iF κλ, or in 3D terms, E = ±iB.
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