
ELECTRIC DIPOLES

In these notes, I write down the electric field of a dipole, and also the net force and the

torque on a dipole in the electric field of other charges. For simplicity, I focus on ideal dipoles

— also called pure dipoles — where the distance a between the positive and the negative

charges is infinitesimal, but the charges are so large that the dipole moment p is finite.

Electric Field of a Dipole

The potential due to an ideal electric dipole p is

V (r) =
p · r̂

4πǫ0 r2
, (1)

or in terms of spherical coordinates where the North pole (θ = 0) points in the direction of

the dipole moment p,

V (r, θ) =
p

4πǫ0

cos θ

r2
. (2)

Taking (minus) gradient of this potential, we obtain the dipole’s electric field

E =
p

4πǫ0

(
2 cos θ

r3
∇r +

sin θ

r2
∇θ

)
=

p

4πǫ0

1

r3

(
2 cos θ r̂ + sin θ θ̂θ

)
. (3)

In this formula, the unit vectors r̂ and θ̂θ themselves depend on θ and φ. Translating them

to Cartesian unit vectors, we have

r̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ,

θ̂θ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,
(4)

hence

2 cos θ r̂ + sin θ θ̂θ = 3 sin θ cos θ(cosφ x̂+ sin φ ŷ) + (2 cos2 θ−sin2 θ = 3 cos2 θ−1) ẑ, (5)
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and therefore

Ex(r, θ, φ) =
p

4πǫ0

3 sin θ cos θ cos φ

r3
,

Ey(r, θ, φ) =
p

4πǫ0

3 sin θ cos θ sin φ

r3
,

Ez(r, θ, φ) =
p

4πǫ0

3 cos2 θ − 1

r3
.

In terms of the (x, y, z) coordinates

Ex(x, y, z) =
p

4πǫ0

3xz

(x2 + y2 + z2)5/2
,

Ey(x, y, z) =
p

4πǫ0

3yz

(x2 + y2 + z2)5/2
,

Ez(x, y, z) =
p

4πǫ0

2z2 − x2 − y2

(x2 + y2 + z2)5/2
,

(6)

or in vector notations,

E(r) =
3(p · r̂)r̂ − p

4πǫ0 r3
. (7)

Here is the picture of the dipole’s electric field lines (in the xz plane):
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Force and Torque on a Dipole

Now consider an ideal dipole p placed in an electric field E(x, y, z) due to some other

sources. If this electric field is uniform, there is no net force on the dipole but there is a net

torque. Indeed, the force F+ = +qE acting on the positive charge cancels the opposite force

F− = −qE = −F+ acting on the negative charge — so the net force is zero — but the two

forces are acting at different points, which causes a torque. Specifically, the net torque of

the two forces is

~τ = r+ × F+ + r− × F− = (r+ − r−)× qE = q(r+ − r−)×E, (8)

or in terms of the dipole moment p = q(r+ − r−),

~τ = p× E. (9)

This torque vanishes when the dipole moment p is parallel to the electric field E. Otherwise,

the torque twists the dipole trying to make it align with the field, p → p′ ↑↑ E.

When the electric field E(x, y, z) is not uniform, the two charges of the dipole feel slightly

different electric fields, so the net force on the dipole does not quite vanish:

Fnet = q
(
E(r+) − E(r−)

)
6= 0. (10)

but for small displacements a = r+− r− between the charges, we may expand the difference

between the electric fields acting on them into a power series in a. Let r± = rm ± 1
2
a where

rm is the middle of the dipole; then

E(r±) = E(rm) ± (1
2
a · ∇)E

∣∣∣
@rm

+ 1
2
(1
2
a · ∇)2E

∣∣∣
@rm

+ 1
6
(1
2
a · ∇)3E

∣∣∣
@rm

+ · · · , (11)

and hence the difference

E(r+) − E(r−) = (a · ∇)E
∣∣∣
@rm

+ 1
24
(a · ∇)3E

∣∣∣
@rm

+ · · · . (12)

Consequently, the net force on the dipole is

Fnet = q(a · ∇)E
∣∣∣
@rm

+
q

24
(a · ∇)3E

∣∣∣
@rm

+ · · · . (13)

For a physical dipole with a finite distance a between the two charges, we must generally
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take into account all the subleading terms in this expansion. But for an ideal dipole we take

the limit a → 0 while q× = p stays finite, so for any n > 1 q × an → 0. This makes all the

subleading terms in eq. (13) negligible compared to the leading term, therefore the net force

on an ideal dipole is simply

Fnet = (p · ∇)E
∣∣∣
@rm

. (14)

The force (14) is conservative and stems from the potential energy

U(rm, p̂) = −p · E(rm). (15)

Indeed, (minus) the gradient of this U WRT the dipole’s location rm taken for a fixed dipole

orientation p̂ produces the force (14),

−∇U

∣∣∣
@fixed

p̂

= (p · ∇)E
∣∣∣
@rm

= Fnet. (16)

Also, variation of the potential energy (15) under infinitesimal rotations of the dipole mo-

ment p accounts for the torque

~τ = p× E. (9)

To be precise, this is the torque relative to the dipole center rm. In a non-uniform electric

field, the torque relative to some other point r0 has an extra term due to the net force (14)

on the dipole, thus

~τ net = (rm − r0)×Fnet + p×E(rm) = (rm − r0)× (p · ∇)E
∣∣∣
@rm

+ p×E(rm). (17)

This net torque may also be obtained from the potential energy U— or rather its infinitesimal

variation under simultaneous rotations of the dipole moment vector p and of the displacement

rm − r0 of the dipole from the reference point — but I am not going to work it out in these

notes.
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