ELECTRIC DIPOLES

In these notes, I write down the electric field of a dipole, and also the net force and the torque on a dipole in the electric field of other charges. For simplicity, I focus on ideal dipoles - also called pure dipoles - where the distance a between the positive and the negative charges is infinitesimal, but the charges are so large that the dipole moment \mathbf{p} is finite.

Electric Field of a Dipole

The potential due to an ideal electric dipole \mathbf{p} is

$$
\begin{equation*}
V(\mathbf{r})=\frac{\mathbf{p} \cdot \widehat{\mathbf{r}}}{4 \pi \epsilon_{0} r^{2}} \tag{1}
\end{equation*}
$$

or in terms of spherical coordinates where the North pole $(\theta=0)$ points in the direction of the dipole moment \mathbf{p},

$$
\begin{equation*}
V(r, \theta)=\frac{p}{4 \pi \epsilon_{0}} \frac{\cos \theta}{r^{2}} \tag{2}
\end{equation*}
$$

Taking (minus) gradient of this potential, we obtain the dipole's electric field

$$
\begin{equation*}
\mathbf{E}=\frac{p}{4 \pi \epsilon_{0}}\left(\frac{2 \cos \theta}{r^{3}} \nabla r+\frac{\sin \theta}{r^{2}} \nabla \theta\right)=\frac{p}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}(2 \cos \theta \widehat{\mathbf{r}}+\sin \theta \widehat{\theta}) . \tag{3}
\end{equation*}
$$

In this formula, the unit vectors $\widehat{\mathbf{r}}$ and $\widehat{\boldsymbol{\theta}}$ themselves depend on θ and ϕ. Translating them to Cartesian unit vectors, we have

$$
\begin{align*}
& \widehat{\mathbf{r}}=\sin \theta \cos \phi \widehat{\mathbf{x}}+\sin \theta \sin \phi \widehat{\mathbf{y}}+\cos \theta \widehat{\mathbf{z}} \\
& \widehat{\theta}=\cos \theta \cos \phi \widehat{\mathbf{x}}+\cos \theta \sin \phi \widehat{\mathbf{y}}-\sin \theta \widehat{\mathbf{z}} \tag{4}
\end{align*}
$$

hence

$$
\begin{equation*}
2 \cos \theta \widehat{\mathbf{r}}+\sin \theta \widehat{\boldsymbol{\theta}}=3 \sin \theta \cos \theta(\cos \phi \widehat{\mathbf{x}}+\sin \phi \widehat{\mathbf{y}})+\left(2 \cos ^{2} \theta-\sin ^{2} \theta=3 \cos ^{2} \theta-1\right) \widehat{\mathbf{z}}, \tag{5}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
& E_{x}(r, \theta, \phi)=\frac{p}{4 \pi \epsilon_{0}} \frac{3 \sin \theta \cos \theta \cos \phi}{r^{3}}, \\
& E_{y}(r, \theta, \phi)=\frac{p}{4 \pi \epsilon_{0}} \frac{3 \sin \theta \cos \theta \sin \phi}{r^{3}}, \\
& E_{z}(r, \theta, \phi)=\frac{p}{4 \pi \epsilon_{0}} \frac{3 \cos ^{2} \theta-1}{r^{3}} .
\end{aligned}
$$

In terms of the (x, y, z) coordinates

$$
\begin{align*}
E_{x}(x, y, z) & =\frac{p}{4 \pi \epsilon_{0}} \frac{3 x z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \\
E_{y}(x, y, z) & =\frac{p}{4 \pi \epsilon_{0}} \frac{3 y z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \tag{6}\\
E_{z}(x, y, z) & =\frac{p}{4 \pi \epsilon_{0}} \frac{2 z^{2}-x^{2}-y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}
\end{align*}
$$

or in vector notations,

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{3(\mathbf{p} \cdot \widehat{\mathbf{r}}) \widehat{\mathbf{r}}-\mathbf{p}}{4 \pi \epsilon_{0} r^{3}} . \tag{7}
\end{equation*}
$$

Here is the picture of the dipole's electric field lines (in the $x z$ plane):

Force and Torque on a Dipole

Now consider an ideal dipole p placed in an electric field $\mathbf{E}(x, y, z)$ due to some other sources. If this electric field is uniform, there is no net force on the dipole but there is a net torque. Indeed, the force $\mathbf{F}_{+}=+q \mathbf{E}$ acting on the positive charge cancels the opposite force $\mathbf{F}_{-}=-q \mathbf{E}=-\mathbf{F}_{+}$acting on the negative charge - so the net force is zero - but the two forces are acting at different points, which causes a torque. Specifically, the net torque of the two forces is

$$
\begin{equation*}
\vec{\tau}=\mathbf{r}_{+} \times \mathbf{F}_{+}+\mathbf{r}_{-} \times \mathbf{F}_{-}=\left(\mathbf{r}_{+}-\mathbf{r}_{-}\right) \times q \mathbf{E}=q\left(\mathbf{r}_{+}-\mathbf{r}_{-}\right) \times \mathbf{E} \tag{8}
\end{equation*}
$$

or in terms of the dipole moment $\mathbf{p}=q\left(\mathbf{r}_{+}-\mathbf{r}_{-}\right)$,

$$
\begin{equation*}
\vec{\tau}=\mathrm{p} \times \mathbf{E} \tag{9}
\end{equation*}
$$

This torque vanishes when the dipole moment \mathbf{p} is parallel to the electric field \mathbf{E}. Otherwise, the torque twists the dipole trying to make it align with the field, $\mathbf{p} \rightarrow \mathbf{p}^{\prime} \uparrow \uparrow \mathbf{E}$.

When the electric field $\mathbf{E}(x, y, z)$ is not uniform, the two charges of the dipole feel slightly different electric fields, so the net force on the dipole does not quite vanish:

$$
\begin{equation*}
\mathbf{F}^{\mathrm{net}}=q\left(\mathbf{E}\left(\mathbf{r}_{+}\right)-\mathbf{E}\left(\mathbf{r}_{-}\right)\right) \neq 0 \tag{10}
\end{equation*}
$$

but for small displacements $\mathbf{a}=\mathbf{r}_{+}-\mathbf{r}_{-}$between the charges, we may expand the difference between the electric fields acting on them into a power series in \mathbf{a}. Let $\mathbf{r}_{ \pm}=\mathbf{r}_{m} \pm \frac{1}{2} \mathbf{a}$ where \mathbf{r}_{m} is the middle of the dipole; then

$$
\begin{equation*}
\mathbf{E}\left(\mathbf{r}_{ \pm}\right)=\mathbf{E}\left(\mathbf{r}_{m}\right) \pm\left.\left(\frac{1}{2} \mathbf{a} \cdot \nabla\right) \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\left.\frac{1}{2}\left(\frac{1}{2} \mathbf{a} \cdot \nabla\right)^{2} \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\left.\frac{1}{6}\left(\frac{1}{2} \mathbf{a} \cdot \nabla\right)^{3} \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\cdots, \tag{11}
\end{equation*}
$$

and hence the difference

$$
\begin{equation*}
\mathbf{E}\left(\mathbf{r}_{+}\right)-\mathbf{E}\left(\mathbf{r}_{-}\right)=\left.(\mathbf{a} \cdot \nabla) \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\left.\frac{1}{24}(\mathbf{a} \cdot \nabla)^{3} \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\cdots . \tag{12}
\end{equation*}
$$

Consequently, the net force on the dipole is

$$
\begin{equation*}
\mathbf{F}^{\mathrm{net}}=\left.q(\mathbf{a} \cdot \nabla) \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\left.\frac{q}{24}(\mathbf{a} \cdot \nabla)^{3} \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\cdots \tag{13}
\end{equation*}
$$

For a physical dipole with a finite distance a between the two charges, we must generally
take into account all the subleading terms in this expansion. But for an ideal dipole we take the limit $a \rightarrow 0$ while $q \times=p$ stays finite, so for any $n>1 q \times a^{n} \rightarrow 0$. This makes all the subleading terms in eq. (13) negligible compared to the leading term, therefore the net force on an ideal dipole is simply

$$
\begin{equation*}
\mathbf{F}^{\mathrm{net}}=\left.(\mathbf{p} \cdot \nabla) \mathbf{E}\right|_{@ \mathbf{r}_{m}} \tag{14}
\end{equation*}
$$

The force (14) is conservative and stems from the potential energy

$$
\begin{equation*}
U\left(\mathbf{r}_{m}, \widehat{\mathbf{p}}\right)=-\mathbf{p} \cdot \mathbf{E}\left(\mathbf{r}_{m}\right) \tag{15}
\end{equation*}
$$

Indeed, (minus) the gradient of this U WRT the dipole's location \mathbf{r}_{m} taken for a fixed dipole orientation $\widehat{\mathbf{p}}$ produces the force (14),

$$
\begin{equation*}
-\left.\nabla U\right|_{\widehat{\mathbf{p}}} ^{@ \text { fixed }}=\left.(\mathbf{p} \cdot \nabla) \mathbf{E}\right|_{@ \mathbf{r}_{m}}=\mathbf{F}^{\mathrm{net}} \tag{16}
\end{equation*}
$$

Also, variation of the potential energy (15) under infinitesimal rotations of the dipole moment \mathbf{p} accounts for the torque

$$
\begin{equation*}
\vec{\tau}=\mathbf{p} \times \mathbf{E} \tag{9}
\end{equation*}
$$

To be precise, this is the torque relative to the dipole center \mathbf{r}_{m}. In a non-uniform electric field, the torque relative to some other point \mathbf{r}_{0} has an extra term due to the net force (14) on the dipole, thus

$$
\begin{equation*}
\vec{\tau}^{\mathrm{net}}=\left(\mathbf{r}_{m}-\mathbf{r}_{0}\right) \times \mathbf{F}^{\mathrm{net}}+\mathbf{p} \times \mathbf{E}\left(\mathbf{r}_{m}\right)=\left(\mathbf{r}_{m}-\mathbf{r}_{0}\right) \times\left.(\mathbf{p} \cdot \nabla) \mathbf{E}\right|_{@ \mathbf{r}_{m}}+\mathbf{p} \times \mathbf{E}\left(\mathbf{r}_{m}\right) \tag{17}
\end{equation*}
$$

This net torque may also be obtained from the potential energy U - or rather its infinitesimal variation under simultaneous rotations of the dipole moment vector \mathbf{p} and of the displacement $\mathbf{r}_{m}-\mathbf{r}_{0}$ of the dipole from the reference point - but I am not going to work it out in these notes.

