
Math of Multipole Expansion

In this note I explain how to expand

1

|R− r|
=

1√
R2 + r2 − 2Rr cos θ

(1)

into a power series in (r/R) for r < R, and then apply this expansion to the Coulomb

potential.

Let’s start with the few leading terms in this expansion for r � R. For the sake of

compactness, let’s denote

α =
r

R
� 1, x = cos θ, β = 2αx − α2 � 1.

In these notations,

1√
R2 + r2 − 2Rr cos θ

=
1√

R2(1 + α2 − 2αx)
=

1

R
× 1√

1− β
. (2)

Next, let’s expand the 1/
√

1− β into powers of β:

S =
1√

1− β
= 1 +

∞∑
n=1

(2n− 1)!!

2n n!
× βn = 1 + 1

2β + 3
8β

2 + 5
16β

3 + · · · . (3)

Now, remember that β = 2αx− α2, plug that into the above expansion, then truncate it to

powers of α no larger than 3:

S = 1 + 1
2(2αx− α2) + 3

8(2αx− α2)2 + 5
16(2αx− α2)3 + · · ·

= 1 + αx − 1
2α

2

+ 3
2α

2x2 − 3
2α

3x + · · ·
+ 5

2α
3x3 + · · ·

+ · · ·

= 1 + α× x + α2 × 3x2 − 1

2
+ α3 × 5x3 − 3x

2
+ · · ·

= 1 + α× P1(x) + α2 × P2(X) + α3 × P3(x) + · · ·

(4)

where P1(x), P2(x), and P3(x) are the Legendre polynomials of respective degrees 1, 2, 3.
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Plugging this result back into eq. (2), we obtain

1√
R2 + r2 − 2Rr cos θ

=
1

R
+

r

R2
×P1(cos θ) +

r2

R3
×P2(cos θ) +

r3

R4
×P3(cos θ) + · · · . (5)

The expansion (5) clearly suggests similar terms for the higher powers of r/R, and indeed

there is a theorem:

For r < R,
1√

R2 + r2 − 2Rr cos θ
=

∞∑
`=0

r`

R`+1
× P`(cos θ). (6)

Proof: Let’s start with the Rodrigues formula for the Legendre polynomials,

P`(x) =
1

2` `!

d`

dx`
(x2 − 1)`, (7)

and the residue method for taking contour integrals in the complex plane,

∮
Γ

dz

2πi

f(z)

(z − x)n+1
= Residue

[
f(z)

(z − x)n+1

]
@z=x

=
1

n!

dnf(z)

dzn

∣∣∣∣
@z=x

(8)

provided the contour Γ circles x and that the function f(x) is analytic and has no singularities

inside the contour Γ. Applying this method in reverse — i.e., turning nth into a contour

integral — to the Rodrigues formula, we obtain

P`(x) =
1

2`

∮
Γ

dz

2πi

(z2 − 1)`

(z − x)`+1
(9)

where the contour Γ circles x. Now let’s plug this formula into the series on the RHS of
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eq. (6):

series =
∞∑
`=0

r`

R`+1
× P`(x)

=
∞∑
`=0

r`

R`+1
× 1

2`

∮
Γ

dz

2πi

(z2 − 1)`

(z − x)`+1

〈〈 putting the sum inside the integral 〉〉

=

∮
Γ

dz

2πi

∞∑
`=0

r`

R`+1
× (z2 − 1)`

2`(z − x)`+1

=

∮
Γ

dz

2πi

1

R(z − x)
×
∞∑
`=0

(
r(z2 − 1)

2R(z − t)

)`
=

∮
Γ

dz

2πi

1

R(z − x)
× 1

1− r(z2−1)
2R(z−x)

=

∮
Γ

dz

2πi

−2

rz2 − 2Rz + 2Rx − r
.

(10)

Note: before the summation, each term on the third line has poles at z = x and at z =∞,

but after the summation, both poles have moved to the roots of the quadratic equation

rz2 − 2Rz + 2Rx − r = 0, (11)

thus

z1,2 =
R±
√
R2 − 2rRx+ r2

r
; for r � R, z1 ≈

2R

r
→ ∞, while z2 ≈ x. (12)

This tells us how to choose the integration contour Γ: It should circle around x and have

enough room to accommodate the shifting of the pole from x to z2, but it should not include

the other pole at z1 which have moved in from the infinity. Consequently, evaluating the

integral on the bottom line of eq. (10) by the residue method, we have

∮
Γ

dz

2πi

−2

rz2 − 2Rz + 2Rx − r
= Residue

[
−2

rz2 − 2Rz + 2Rx − r

]
@z=z2

. (13)
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Specifically,

−2

rz2 − 2Rz + 2Rx − r
=
−2

r
× 1

(z − z1)(z − z2)
, (14)

so the residue of this function at z = z2 is simply

Residue =
−2

r
× 1

z2 − z1
=
−2

r
× r

−2
√
R2 − 2rRx+ r2

= +
1√

R2 − 2rRx+ r2
. (15)

Thus,

the series =
∞∑
`=0

r`

R`+1
× P`(x) =

1√
R2 − 2rRx+ r2

, (16)

which proves the theorem (6), quod erat demonstrandum.

Aside: A few words about the convergence of the expansion (6). For x = cos θ ranging between −1 and

+1, all the Legendre polynomials take values between −1 and +1. Consequently, the series (6) converges for

any r < R. If we analytically continue it to the complex r, it would converge for |r| < R; in other words,

it has radius of convergence = R. Indeed, as a function of complex r, the 1/
√
· · · on the LHS of (6) has

singularities at

r1,2 = R cos θ ± iR sin θ, |r1,2| = R,

and that’s what sets the radius of convergence to |r| < R.

For r > R we may longer expand the inverse distance into powers of r/R. Instead, we may expand it

into powers of the inverse ratio R/r:

For r > R,
1√

R2 + r2 − 2Rr cos θ
=

∞∑
`=0

R`

r`+1
× P`(cos θ), (17)

which works exactly like eq. (6) once we exchange r ↔ R.

Physically, the expansion (6) is useful for potentials far outside complicated charged bodies, while the

inverse expansion (17) is useful for potentials deep inside a cavity.
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Multipole Expansion of the Electric Potential

Now consider the Coulomb potential of some continuous charge distribution ρ(~r),

V (~R) =
1

4πε0

∫∫∫
ρ(r) d3Vol

|R− r|
. (18)

Suppose all the charges are limited to some compact volume, while we want to know the

potential far away from that volume, so in the integral (18) we always have r � R. Conse-

quently, we may expand the denominator in the Coulomb potential according to the Theo-

rem (6), thus

V (R) =
1

4πε0

∫∫∫
d3Vol ρ(r)×

∞∑
`=0

r`

R`+1
× P`(cos θ)

=
∞∑
`=0

1

4πε0R`+1
×
∫∫∫

d3Vol ρ(r)× r`P`(cos θ)

(19)

where θ is the angle between the radius-vectors R and r. In terms of the unit vectors R̂ and

r̂ in the directions of R and r,

cos θ = R̂ · r̂. (20)

Consequently, we may decompose the potential V (R) of the charges ρ(r) into a series of

multipole potentials,

V (R) =
∞∑
`=0

M`(R̂)

4πε0R`+1
(21)

where

M`(R̂) =

∫∫∫
r`P`(r̂ · R̂)× ρ(r) d3Vol. (22)

is the 2`–pole moment of the charge distribution ρ(r). Or rather, it’s the component of the

2`–pole moment in the direction R̂.
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Let’s take a closer look at these components:

• ` = 0 • The monopole moment M0 is simply the net charge of the distribution,

M0 =

∫∫∫
ρ(r) d3Vol = Qnet, (23)

and it obviously does not depend on the direction R̂, hence isotropic monopole poten-

tial,

Vmonopole =
Qnet

4πε0R
. (24)

• ` = 1 • The dipole moment is a vector

p =

∫∫∫
r ρ(r) d3Vol (25)

and the M1(R̂) in the series (21) is simply

M1(R̂) = R̂ · p, (26)

hence the dipole’s potential

Vdipole =
p · R̂

4πε0R2
. (27)

To see how this works, note that r1 × P1(R̂ · r̂) = r(R̂ · r̂) = R̂ · r, hence

M1(R̂) =

∫∫∫
(R̂ · r)ρ(r) d3Vol = R̂ ·

∫∫∫
r ρ(r) d3Vol = R̂ · p. (28)

• ` = 2 • The quadrupole moment is a 2-index symmetric tensor

Qi,j =

∫∫∫ (
3
2rirj −

1
2δi,jr

2
)
ρ(r) d3Vol (29)

where the indices i, j run over x, y, z, the ri are the components of the vector r, and

δi,j is the Kronecker’s delta (1 for i = j and 0 for i 6= j).
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To see the relation between this tensor and theM2(R̂) in the series (21), let’s expand

the second Legendre polynomial P2(cos θ) = P2(R̂ · r̂):

P2(R̂ · r̂) = 3
2(R̂ · r̂)2 − 1

2 , (30)

3
2(R̂ · r̂)2 =

3

2

(∑
i

R̂ir̂i

)2

=
3

2

(∑
i

R̂ir̂i

)
×

∑
j

R̂j r̂j


=

3

2

∑
i,j

R̂iR̂j r̂ir̂j , (31)

1
2 = 1

2R̂ · R̂ 〈〈 since R̂ is a unit vector 〉〉

=
1

2

∑
i

R̂iR̂i =
1

2

∑
i,j

δi,j × R̂iR̂j , (32)

hence P2(R̂ · r̂) =
∑
i,j

R̂iR̂j

(
3
2 r̂ir̂j −

1
2δij

)
, (33)

and r2 × P2(R̂ · r̂) =
∑
i,j

R̂iR̂j

(
3
2rirj −

1
2r

2δij

)
. (34)

Plugging the last line here into eq. (22) for ` = 2, we obtain

M2(R̂) =

∫∫∫ ∑
i,j

R̂iR̂j

(
3
2rirj −

1
2r

2δij

)
× ρ(r) d3Vol

=
∑
i,j

R̂iR̂j ×
∫∫∫ (

3
2rirj −

1
2r

2δij

)
× ρ(r) d3Vol

=
∑
i,j

R̂iR̂j ×Qi,j ,

(35)

hence the quadrupole potential

Vquadrupole(R) =

∑
i,j Qi,jR̂iR̂j
4πε0R3

. (36)
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• ` ≥ 3 • The higher multipoles are `–index symmetric tensors. For example, the octupole mo-

ment is the 3-index tensor

Oi,j,k =

∫∫∫ (
5
2rirjrk −

1
2δi,jrk −

1
2δi,krj −

1
2δj,kri

)
× ρ(r) d3Vol (37)

whose potential is

Voctupole(R) =

∑
i,j,kOi,j,kR̂iR̂jR̂k

4πε0R4
. (38)

Likewise, for higher ` the potential has form

V2`−pole(R) =

∑
i,j,...,nM

(`)
i,j,...,nR̂iR̂j · · · R̂n

4πε0R`+1
(39)

where

M(`)
i,j,...,n =

∫∫∫ (
homogeneous polynomial

of degree ` in x, y, z

)
× ρ(r) d3Vol (40)

where the specific form of the degree–` polynomial follows from the P`(cos θ).

Axial Symmetry

For the axially symmetric charge distributions ρ(r, θ, φ) = ρ(r, θ only), we may re-express

the angular dependence of the multipole expansion using the following

Lemma: Let (θ, φ) be the spherical angles of the direction R̂ while (θ′, φ′) are spherical

angles of the direction r̂, then

2π∫
0

dφ′

2π
P`(R̂ · r̂) = P`(cos θ)× P`(cos θ′). (41)

Consequently, for an axially symmetric charge distribution

M`(R̂) =

∫∫∫
r`P`(R̂ · r̂)× ρ(r, θ′)× r2 sin θ′ dr dθ′ dφ′

= P`(cos θ)×M(`)
z···z (42)
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where M(`)
z···z =

∫∫∫
r`P`(cos θ′)× ρ(r, θ′)× r2 sin θ′ dr dθ′ dφ′ (43)

is the z, . . . , z component of the 2`–pole vector or tensor, for example pz, Qz,z, or Oz,z,z.
For the axially symmetric charge distribution it’s the only independent component, and it’s

also the only component we need for expanding the potential:

V (R, θ) =
M(`)

z···z
4πε0

× P`(cos θ)

R`+1
. (44)

You should see examples of such expansion in your homework.
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