Math of Multipole Expansion

In this note I explain how to expand

$$
\begin{equation*}
\frac{1}{|\mathbf{R}-\mathbf{r}|}=\frac{1}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta}} \tag{1}
\end{equation*}
$$

into a power series in (r / R) for $r<R$, and then apply this expansion to the Coulomb potential.

Let's start with the few leading terms in this expansion for $r \ll R$. For the sake of compactness, let's denote

$$
\alpha=\frac{r}{R} \ll 1, \quad x=\cos \theta, \quad \beta=2 \alpha x-\alpha^{2} \ll 1 .
$$

In these notations,

$$
\begin{equation*}
\frac{1}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta}}=\frac{1}{\sqrt{R^{2}\left(1+\alpha^{2}-2 \alpha x\right)}}=\frac{1}{R} \times \frac{1}{\sqrt{1-\beta}} . \tag{2}
\end{equation*}
$$

Next, let's expand the $1 / \sqrt{1-\beta}$ into powers of β :

$$
\begin{equation*}
S=\frac{1}{\sqrt{1-\beta}}=1+\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{2^{n} n!} \times \beta^{n}=1+\frac{1}{2} \beta+\frac{3}{8} \beta^{2}+\frac{5}{16} \beta^{3}+\cdots \tag{3}
\end{equation*}
$$

Now, remember that $\beta=2 \alpha x-\alpha^{2}$, plug that into the above expansion, then truncate it to powers of α no larger than 3:

$$
\begin{align*}
& S=1+\frac{1}{2}\left(2 \alpha x-\alpha^{2}\right)+\frac{3}{8}\left(2 \alpha x-\alpha^{2}\right)^{2}+\frac{5}{16}\left(2 \alpha x-\alpha^{2}\right)^{3}+\cdots \\
& =1+\alpha x \quad-\frac{1}{2} \alpha^{2} \\
& +\frac{3}{2} \alpha^{2} x^{2} \quad-\frac{3}{2} \alpha^{3} x \quad+\cdots \\
& +\frac{5}{2} \alpha^{3} x^{3} \quad+\cdots \tag{4}\\
& +\cdots \\
& =1+\alpha \times x \quad+\alpha^{2} \times \frac{3 x^{2}-1}{2}+\alpha^{3} \times \frac{5 x^{3}-3 x}{2}+\cdots \\
& =1+\alpha \times P_{1}(x)+\alpha^{2} \times P_{2}(X)+\alpha^{3} \times P_{3}(x) \quad+\cdots
\end{align*}
$$

where $P_{1}(x), P_{2}(x)$, and $P_{3}(x)$ are the Legendre polynomials of respective degrees $1,2,3$.

Plugging this result back into eq. (2), we obtain

$$
\begin{equation*}
\frac{1}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta}}=\frac{1}{R}+\frac{r}{R^{2}} \times P_{1}(\cos \theta)+\frac{r^{2}}{R^{3}} \times P_{2}(\cos \theta)+\frac{r^{3}}{R^{4}} \times P_{3}(\cos \theta)+\cdots \tag{5}
\end{equation*}
$$

The expansion (5) clearly suggests similar terms for the higher powers of r / R, and indeed there is a theorem:

$$
\begin{equation*}
\text { For } r<R, \quad \frac{1}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta}}=\sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times P_{\ell}(\cos \theta) \text {. } \tag{6}
\end{equation*}
$$

Proof: Let's start with the Rodrigues formula for the Legendre polynomials,

$$
\begin{equation*}
P_{\ell}(x)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d x^{\ell}}\left(x^{2}-1\right)^{\ell} \tag{7}
\end{equation*}
$$

and the residue method for taking contour integrals in the complex plane,

$$
\begin{equation*}
\oint_{\Gamma} \frac{d z}{2 \pi i} \frac{f(z)}{(z-x)^{n+1}}=\text { Residue }\left[\frac{f(z)}{(z-x)^{n+1}}\right]_{@ z=x}=\left.\frac{1}{n!} \frac{d^{n} f(z)}{d z^{n}}\right|_{@ z=x} \tag{8}
\end{equation*}
$$

provided the contour Γ circles x and that the function $f(x)$ is analytic and has no singularities inside the contour Γ. Applying this method in reverse - i.e., turning $n^{\text {th }}$ into a contour integral - to the Rodrigues formula, we obtain

$$
\begin{equation*}
P_{\ell}(x)=\frac{1}{2^{\ell}} \oint_{\Gamma} \frac{d z}{2 \pi i} \frac{\left(z^{2}-1\right)^{\ell}}{(z-x)^{\ell+1}} \tag{9}
\end{equation*}
$$

where the contour Γ circles x. Now let's plug this formula into the series on the RHS of
eq. (6):

$$
\begin{align*}
\text { series }= & \sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times P_{\ell}(x) \\
= & \sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times \frac{1}{2^{\ell}} \oint_{\Gamma} \frac{d z}{2 \pi i} \frac{\left(z^{2}-1\right)^{\ell}}{(z-x)^{\ell+1}} \\
& \langle\langle\text { putting the sum inside the integral }\rangle\rangle \\
= & \oint_{\Gamma} \frac{d z}{2 \pi i} \sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times \frac{\left(z^{2}-1\right)^{\ell}}{2^{\ell}(z-x)^{\ell+1}} \tag{10}\\
= & \oint_{\Gamma} \frac{d z}{2 \pi i} \frac{1}{R(z-x)} \times \sum_{\ell=0}^{\infty}\left(\frac{r\left(z^{2}-1\right)}{2 R(z-t)}\right)^{\ell} \\
= & \oint_{\Gamma} \frac{d z}{2 \pi i} \frac{1}{R(z-x)} \times \frac{1}{1-\frac{r\left(z^{2}-1\right)}{2 R(z-x)}} \\
= & \oint_{\Gamma} \frac{d z}{2 \pi i} \frac{-2}{r z^{2}-2 R z+2 R x-r} .
\end{align*}
$$

Note: before the summation, each term on the third line has poles at $z=x$ and at $z=\infty$, but after the summation, both poles have moved to the roots of the quadratic equation

$$
\begin{equation*}
r z^{2}-2 R z+2 R x-r=0 \tag{11}
\end{equation*}
$$

thus

$$
\begin{equation*}
z_{1,2}=\frac{R \pm \sqrt{R^{2}-2 r R x+r^{2}}}{r} ; \quad \text { for } r \ll R, \quad z_{1} \approx \frac{2 R}{r} \rightarrow \infty, \quad \text { while } \quad z_{2} \approx x \tag{12}
\end{equation*}
$$

This tells us how to choose the integration contour Γ : It should circle around x and have enough room to accommodate the shifting of the pole from x to z_{2}, but it should not include the other pole at z_{1} which have moved in from the infinity. Consequently, evaluating the integral on the bottom line of eq. (10) by the residue method, we have

$$
\begin{equation*}
\oint_{\Gamma} \frac{d z}{2 \pi i} \frac{-2}{r z^{2}-2 R z+2 R x-r}=\text { Residue }\left[\frac{-2}{r z^{2}-2 R z+2 R x-r}\right]_{@ z=z_{2}} \tag{13}
\end{equation*}
$$

Specifically,

$$
\begin{equation*}
\frac{-2}{r z^{2}-2 R z+2 R x-r}=\frac{-2}{r} \times \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}, \tag{14}
\end{equation*}
$$

so the residue of this function at $z=z_{2}$ is simply

$$
\begin{equation*}
\text { Residue }=\frac{-2}{r} \times \frac{1}{z_{2}-z_{1}}=\frac{-2}{r} \times \frac{r}{-2 \sqrt{R^{2}-2 r R x+r^{2}}}=+\frac{1}{\sqrt{R^{2}-2 r R x+r^{2}}} . \tag{15}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\text { the series }=\sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times P_{\ell}(x)=\frac{1}{\sqrt{R^{2}-2 r R x+r^{2}}} \tag{16}
\end{equation*}
$$

which proves the theorem (6), quod erat demonstrandum.
Aside: A few words about the convergence of the expansion (6). For $x=\cos \theta$ ranging between -1 and +1 , all the Legendre polynomials take values between -1 and +1 . Consequently, the series (6) converges for any $r<R$. If we analytically continue it to the complex r, it would converge for $|r|<R$; in other words, it has radius of convergence $=R$. Indeed, as a function of complex r, the $1 / \sqrt{\cdots}$ on the LHS of (6) has singularities at

$$
r_{1,2}=R \cos \theta \pm i R \sin \theta, \quad\left|r_{1,2}\right|=R
$$

and that's what sets the radius of convergence to $|r|<R$.
For $r>R$ we may longer expand the inverse distance into powers of r / R. Instead, we may expand it into powers of the inverse ratio R / r :

$$
\begin{equation*}
\text { For } r>R, \quad \frac{1}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta}}=\sum_{\ell=0}^{\infty} \frac{R^{\ell}}{r^{\ell+1}} \times P_{\ell}(\cos \theta) \tag{17}
\end{equation*}
$$

which works exactly like eq. (6) once we exchange $r \leftrightarrow R$.
Physically, the expansion (6) is useful for potentials far outside complicated charged bodies, while the inverse expansion (17) is useful for potentials deep inside a cavity.

Multipole Expansion of the Electric Potential

Now consider the Coulomb potential of some continuous charge distribution $\rho(\vec{r})$,

$$
\begin{equation*}
V(\vec{R})=\frac{1}{4 \pi \epsilon_{0}} \iiint \frac{\rho(\mathbf{r}) d^{3} \mathrm{Vol}}{|\mathbf{R}-\mathbf{r}|} \tag{18}
\end{equation*}
$$

Suppose all the charges are limited to some compact volume, while we want to know the potential far away from that volume, so in the integral (18) we always have $r \ll R$. Consequently, we may expand the denominator in the Coulomb potential according to the Theorem (6), thus

$$
\begin{align*}
V(\mathbf{R}) & =\frac{1}{4 \pi \epsilon_{0}} \iiint d^{3} \operatorname{Vol} \rho(\mathbf{r}) \times \sum_{\ell=0}^{\infty} \frac{r^{\ell}}{R^{\ell+1}} \times P_{\ell}(\cos \theta) \tag{19}\\
& =\sum_{\ell=0}^{\infty} \frac{1}{4 \pi \epsilon_{0} R^{\ell+1}} \times \iiint d^{3} \operatorname{Vol} \rho(\mathbf{r}) \times r^{\ell} P_{\ell}(\cos \theta)
\end{align*}
$$

where θ is the angle between the radius-vectors \mathbf{R} and \mathbf{r}. In terms of the unit vectors $\widehat{\mathbf{R}}$ and $\widehat{\mathbf{r}}$ in the directions of \mathbf{R} and \mathbf{r},

$$
\begin{equation*}
\cos \theta=\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}} \tag{20}
\end{equation*}
$$

Consequently, we may decompose the potential $V(\mathbf{R})$ of the charges $\rho(\mathbf{r})$ into a series of multipole potentials,

$$
\begin{equation*}
V(\mathbf{R})=\sum_{\ell=0}^{\infty} \frac{\mathcal{M}_{\ell}(\widehat{\mathbf{R}})}{4 \pi \epsilon_{0} R^{\ell+1}} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}_{\ell}(\widehat{\mathbf{R}})=\iiint r^{\ell} P_{\ell}(\widehat{\mathbf{r}} \cdot \widehat{\mathbf{R}}) \times \rho(\mathbf{r}) d^{3} \mathrm{Vol} . \tag{22}
\end{equation*}
$$

is the 2^{ℓ}-pole moment of the charge distribution $\rho(\mathbf{r})$. Or rather, it's the component of the 2^{ℓ}-pole moment in the direction $\widehat{\mathbf{R}}$.

Let's take a closer look at these components:
$\bullet \ell=0 \bullet$ The monopole moment \mathcal{M}_{0} is simply the net charge of the distribution,

$$
\begin{equation*}
\mathcal{M}_{0}=\iiint \rho(\mathbf{r}) d^{3} \mathrm{Vol}=Q^{\mathrm{net}} \tag{23}
\end{equation*}
$$

and it obviously does not depend on the direction $\widehat{\mathbf{R}}$, hence isotropic monopole potential,

$$
\begin{equation*}
V_{\text {monopole }}=\frac{Q^{\mathrm{net}}}{4 \pi \epsilon_{0} R} \tag{24}
\end{equation*}
$$

$\bullet \ell=1$ - The dipole moment is a vector

$$
\begin{equation*}
\mathbf{p}=\iiint \mathbf{r} \rho(\mathbf{r}) d^{3} \mathrm{Vol} \tag{25}
\end{equation*}
$$

and the $\mathcal{M}_{1}(\widehat{\mathbf{R}})$ in the series (21) is simply

$$
\begin{equation*}
\mathcal{M}_{1}(\widehat{\mathbf{R}})=\widehat{\mathbf{R}} \cdot \mathbf{p} \tag{26}
\end{equation*}
$$

hence the dipole's potential

$$
\begin{equation*}
V_{\text {dipole }}=\frac{\mathbf{p} \cdot \widehat{\mathbf{R}}}{4 \pi \epsilon_{0} R^{2}} \tag{27}
\end{equation*}
$$

To see how this works, note that $r^{1} \times P_{1}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})=r(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})=\widehat{\mathbf{R}} \cdot \mathbf{r}$, hence

$$
\begin{equation*}
\mathcal{M}_{1}(\widehat{\mathbf{R}})=\iiint(\widehat{\mathbf{R}} \cdot \mathbf{r}) \rho(\mathbf{r}) d^{3} \mathrm{Vol}=\widehat{\mathbf{R}} \cdot \iiint \mathbf{r} \rho(\mathbf{r}) d^{3} \mathrm{Vol}=\widehat{\mathbf{R}} \cdot \mathbf{p} \tag{28}
\end{equation*}
$$

- $\ell=2$ - The quadrupole moment is a 2 -index symmetric tensor

$$
\begin{equation*}
\mathcal{Q}_{i, j}=\iiint\left(\frac{3}{2} r_{i} r_{j}-\frac{1}{2} \delta_{i, j} r^{2}\right) \rho(\mathbf{r}) d^{3} \mathrm{Vol} \tag{29}
\end{equation*}
$$

where the indices i, j run over x, y, z, the r_{i} are the components of the vector \mathbf{r}, and $\delta_{i, j}$ is the Kronecker's delta (1 for $i=j$ and 0 for $i \neq j$).

To see the relation between this tensor and the $\mathcal{M}_{2}(\widehat{\mathbf{R}})$ in the series (21), let's expand the second Legendre polynomial $P_{2}(\cos \theta)=P_{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})$:

$$
\begin{align*}
P_{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}}) & =\frac{3}{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})^{2}-\frac{1}{2} \tag{30}\\
\frac{3}{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})^{2} & =\frac{3}{2}\left(\sum_{i} \widehat{R}_{i} \widehat{r}_{i}\right)^{2}=\frac{3}{2}\left(\sum_{i} \widehat{R}_{i} \widehat{r}_{i}\right) \times\left(\sum_{j} \widehat{R}_{j} \widehat{r}_{j}\right) \\
& =\frac{3}{2} \sum_{i, j} \widehat{R}_{i} \widehat{R}_{j} \widehat{r}_{i} \widehat{r}_{j}, \tag{31}\\
\frac{1}{2} & =\frac{1}{2} \widehat{\mathbf{R}} \cdot \widehat{\mathbf{R}}\langle\langle\text { since } \widehat{\mathbf{R}} \text { is a unit vector }\rangle \\
& =\frac{1}{2} \sum_{i} \widehat{R}_{i} \widehat{R}_{i}=\frac{1}{2} \sum_{i, j} \delta_{i, j} \times \widehat{R}_{i} \widehat{R}_{j}, \tag{32}\\
\text { hence } P_{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}}) & =\sum_{i, j} \widehat{R}_{i} \widehat{R}_{j}\left(\frac{3}{2} \widehat{r}_{i} \widehat{r}_{j}-\frac{1}{2} \delta_{i j}\right) \tag{33}\\
\text { and } r^{2} \times P_{2}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}}) & =\sum_{i, j} \widehat{R}_{i} \widehat{R}_{j}\left(\frac{3}{2} r_{i} r_{j}-\frac{1}{2} r^{2} \delta_{i j}\right) . \tag{34}
\end{align*}
$$

Plugging the last line here into eq. (22) for $\ell=2$, we obtain

$$
\begin{align*}
\mathcal{M}_{2}(\widehat{\mathbf{R}}) & =\iiint \sum_{i, j} \widehat{R}_{i} \widehat{R}_{j}\left(\frac{3}{2} r_{i} r_{j}-\frac{1}{2} r^{2} \delta_{i j}\right) \times \rho(\mathbf{r}) d^{3} \mathrm{Vol} \\
& =\sum_{i, j} \widehat{R}_{i} \widehat{R}_{j} \times \iiint\left(\frac{3}{2} r_{i} r_{j}-\frac{1}{2} r^{2} \delta_{i j}\right) \times \rho(\mathbf{r}) d^{3} \mathrm{Vol} \tag{35}\\
& =\sum_{i, j} \widehat{R}_{i} \widehat{R}_{j} \times \mathcal{Q}_{i, j}
\end{align*}
$$

hence the quadrupole potential

$$
\begin{equation*}
V_{\text {quadrupole }}(\mathbf{R})=\frac{\sum_{i, j} \mathcal{Q}_{i, j} \widehat{R}_{i} \widehat{R}_{j}}{4 \pi \epsilon_{0} R^{3}} \tag{36}
\end{equation*}
$$

$\bullet \ell \geq 3 \bullet$ The higher multipoles are ℓ-index symmetric tensors. For example, the octupole moment is the 3 -index tensor

$$
\begin{equation*}
\mathcal{O}_{i, j, k}=\iiint\left(\frac{5}{2} r_{i} r_{j} r_{k}-\frac{1}{2} \delta_{i, j} r_{k}-\frac{1}{2} \delta_{i, k} r_{j}-\frac{1}{2} \delta_{j, k} r_{i}\right) \times \rho(\mathbf{r}) d^{3} \mathrm{Vol} \tag{37}
\end{equation*}
$$

whose potential is

$$
\begin{equation*}
V_{\text {octupole }}(\mathbf{R})=\frac{\sum_{i, j, k} \mathcal{O}_{i, j, k} \widehat{R}_{i} \widehat{R}_{j} \widehat{R}_{k}}{4 \pi \epsilon_{0} R^{4}} \tag{38}
\end{equation*}
$$

Likewise, for higher ℓ the potential has form

$$
\begin{equation*}
V_{2^{\ell}-\text { pole }}(\mathbf{R})=\frac{\sum_{i, j, \ldots, n} \mathcal{M}_{i, j, \ldots, n}^{(\ell)} \widehat{R}_{i} \widehat{R}_{j} \cdots \widehat{R}_{n}}{4 \pi \epsilon_{0} R^{\ell+1}} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}_{i, j, \ldots, n}^{(\ell)}=\iiint\binom{\text { homogeneous polynomial }}{\text { of degree } \ell \text { in } x, y, z} \times \rho(\mathbf{r}) d^{3} \mathrm{Vol} \tag{40}
\end{equation*}
$$

where the specific form of the degree ℓ polynomial follows from the $P_{\ell}(\cos \theta)$.

Axial Symmetry

For the axially symmetric charge distributions $\rho(r, \theta, \phi)=\rho(r, \theta$ only $)$, we may re-express the angular dependence of the multipole expansion using the following
Lemma: Let (θ, ϕ) be the spherical angles of the direction $\widehat{\mathbf{R}}$ while $\left(\theta^{\prime}, \phi^{\prime}\right)$ are spherical angles of the direction $\widehat{\mathbf{r}}$, then

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \phi^{\prime}}{2 \pi} P_{\ell}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}})=P_{\ell}(\cos \theta) \times P_{\ell}\left(\cos \theta^{\prime}\right) \tag{41}
\end{equation*}
$$

Consequently, for an axially symmetric charge distribution

$$
\begin{align*}
\mathcal{M}_{\ell}(\widehat{\mathbf{R}}) & =\iiint r^{\ell} P_{\ell}(\widehat{\mathbf{R}} \cdot \widehat{\mathbf{r}}) \times \rho\left(r, \theta^{\prime}\right) \times r^{2} \sin \theta^{\prime} d r d \theta^{\prime} d \phi^{\prime} \\
& =P_{\ell}(\cos \theta) \times \mathcal{M}_{z \cdots z}^{(\ell)} \tag{42}
\end{align*}
$$

$$
\begin{equation*}
\text { where } \mathcal{M}_{z \cdots z}^{(\ell)}=\iiint r^{\ell} P_{\ell}\left(\cos \theta^{\prime}\right) \times \rho\left(r, \theta^{\prime}\right) \times r^{2} \sin \theta^{\prime} d r d \theta^{\prime} d \phi^{\prime} \tag{43}
\end{equation*}
$$

is the z, \ldots, z component of the 2^{ℓ}-pole vector or tensor, for example $p_{z}, \mathcal{Q}_{z, z}$, or $\mathcal{O}_{z, z, z}$. For the axially symmetric charge distribution it's the only independent component, and it's also the only component we need for expanding the potential:

$$
\begin{equation*}
V(R, \theta)=\frac{\mathcal{M}_{z \cdots z}^{(\ell)}}{4 \pi \epsilon_{0}} \times \frac{P_{\ell}(\cos \theta)}{R^{\ell+1}} . \tag{44}
\end{equation*}
$$

You should see examples of such expansion in your homework.

