Math of Multipole Expansion

In this note I explain how to expand
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into a power series in (r/R) for r < R, and then apply this expansion to the Coulomb

potential.

Let’s start with the few leading terms in this expansion for r < R. For the sake of

compactness, let’s denote
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a:%<<1, r = cosf, [ = 2ax — o < 1.
In these notations,
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Next, let’s expand the 1/4/1 — [ into powers of 3:
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Now, remember that § = 2ax — o?, plug that into the above expansion, then truncate it to

powers of o no larger than 3:
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where Pj(z), Py(z), and P3(x) are the Legendre polynomials of respective degrees 1, 2, 3.



Plugging this result back into eq. (2), we obtain
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The expansion (5) clearly suggests similar terms for the higher powers of /R, and indeed

there is a theorem:
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Proof: Let’s start with the Rodrigues formula for the Legendre polynomials,
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and the residue method for taking contour integrals in the complex plane,
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provided the contour T circles z and that the function f(x) is analytic and has no singularities
inside the contour I'. Applying this method in reverse — i.e., turning n'™ into a contour

integral — to the Rodrigues formula, we obtain
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where the contour I' circles x. Now let’s plug this formula into the series on the RHS of
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(( putting the sum inside the integral ))
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Note: before the summation, each term on the third line has poles at z = x and at z = oo,

but after the summation, both poles have moved to the roots of the quadratic equation
rz> — 2Rz + 2Rz —r = 0, (11)

thus
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This tells us how to choose the integration contour I': It should circle around x and have
enough room to accommodate the shifting of the pole from x to zo, but it should not include
the other pole at z; which have moved in from the infinity. Consequently, evaluating the

integral on the bottom line of eq. (10) by the residue method, we have
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Specifically,
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so the residue of this function at z = 23 is simply
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which proves the theorem (6), quod erat demonstrandum.

ASIDE: A few words about the convergence of the expansion (6). For z = cos ranging between —1 and
+1, all the Legendre polynomials take values between —1 and +1. Consequently, the series (6) converges for
any r < R. If we analytically continue it to the complex r, it would converge for || < R; in other words,
it has radius of convergence = R. Indeed, as a function of complex r, the 1/4/--- on the LHS of (6) has

singularities at

r1,2 = Rcosf = i¢Rsinb, Ir1i2] = R,

and that’s what sets the radius of convergence to |r| < R.

For r > R we may longer expand the inverse distance into powers of r/R. Instead, we may expand it

into powers of the inverse ratio R/r:
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which works exactly like eq. (6) once we exchange r <+ R.

Physically, the expansion (6) is useful for potentials far outside complicated charged bodies, while the

inverse expansion (17) is useful for potentials deep inside a cavity.



Multipole Expansion of the Electric Potential

Now consider the Coulomb potential of some continuous charge distribution p(7),
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Suppose all the charges are limited to some compact volume, while we want to know the

potential far away from that volume, so in the integral (18) we always have r < R. Conse-
quently, we may expand the denominator in the Coulomb potential according to the Theo-

rem (6), thus
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where 6 is the angle between the radius-vectors R and r. In terms of the unit vectors R and

T in the directions of R and r,

cosf = R-T. (20)

Consequently, we may decompose the potential V(R) of the charges p(r) into a series of

multipole potentials,
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where
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is the 2¢-pole moment of the charge distribution p(r). Or rather, it’s the component of the

2t —pole moment in the direction R.



Let’s take a closer look at these components:
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The monopole moment My is simply the net charge of the distribution,

My = /// )d3Vol = Q™ (23)

and it obviously does not depend on the direction IA{, hence isotropic monopole poten-
tial,
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The dipole moment is a vector
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and the /\/l1(f{) in the series (21) is simply

hence the dipole’s potential
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To see how this works, note that r' x P{(R-T) = r(R-T) =R -1, hence
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The quadrupole moment is a 2-index symmetric tensor

Qi = /// Sriry — $6i7%)p(r) d*Vol (29)

where the indices i, j run over x,y, z, the r; are the components of the vector r, and

d; ; is the Kronecker’s delta (1 for i = j and 0 for ¢ # j).



To see the relation between this tensor and the Ma(R) in the series (21), let’s expand

the second Legendre polynomial P»(cosf) = Pg(f{ - T):
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Plugging the last line here into eq. (22) for ¢ = 2, we obtain
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hence the quadrupole potential
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o/ > 3 e The higher multipoles are /-index symmetric tensors. For example, the octupole mo-

ment is the 3-index tensor
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whose potential is
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Likewise, for higher ¢ the potential has form
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where

of degree ¢ in x,y, z
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where the specific form of the degree—¢ polynomial follows from the Py(cos#).

AXIAL SYMMETRY

For the axially symmetric charge distributions p(r, 8, ¢) = p(r, 6 only), we may re-express
the angular dependence of the multipole expansion using the following
Lemma: Let (6,¢) be the spherical angles of the direction R while (0',¢") are spherical

angles of the direction T, then
d¢/ D o /
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Consequently, for an axially symmetric charge distribution
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= Pycost) x MY, (42)



where Mff)z = /// 1 Py(cos0') x p(r,0') x r?sin @ dr do' d¢’ (43)

is the z,...,z component of the 2€—p01e vector or tensor, for example p,, Q. ., or O, .
For the axially symmetric charge distribution it’s the only independent component, and it’s

also the only component we need for expanding the potential:
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You should see examples of such expansion in your homework.



