
Equations for the Vector Potential

The vector potential A(x, y, z) for any particular magnetic field B(x, y, z) is not unique

— there is a whole family of such vector potential related by gauge transforms

A′(x, y, z) = A(x, y, z) + ∇Λ(x, y, z) =⇒ B′(x, y, z) = B(x, y, z). (1)

To avoid this redundancy, it is often convenient to impose an extra gauge-fixing condition on

the vector potential besides ∇×A = B. The commonly used conditions are the axial gauge

Az = 0 (or A · n = 0 for any fixed vector n) and the transverse gauge ∇ ·A = 0. Note that

any vector potential can be gauge-transformed to a potential which obeys the transversality

condition. Indeed, suppose ∇ ·A0 6= 0, then for

Λ(r) =
1

4π

∫∫∫

(∇ ·A0)(r
′)

|r− r′| d3Vol
′

(2)

we have

∇2Λ(r) = −∇ ·A0(r) (3)

and therefore A = A0 +∇Λ — which is gauge-equivalent to the A0 — has zero divergence,

∇ ·A = ∇ ·A0 + ∇2Λ = 0. (4)

Now consider the equations for the magnetic field B(x, y, z) in terms of the vector poten-

tial A(x, y, z). On one hand, B = ∇×A automatically solves the zero-divergence equation

∇ ·B = 0. On the other hand, the Ampere equation ∇×B = µ0J becomes a second-order

equation for the vector potential

µ0J = ∇× (∇×A) = ∇(∇ ·A) − ∇2A. (5)

In the transverse gauge ∇ ·A = 0, the first term on the RHS vanishes, and we are left with
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the Poisson equation for the vector potential,

∇2A(x, y, z) = −µ0 J(x, y, z). (6)

Component by component, it looks exactly like the Poisson equation for the scalar potential

of the electrostatics,

∇2V (x, y, z) = ǫ−1
0 ρ(x, y, z), (7)

so its solution has a similar Coulomb-like form

A(r) =
µ0
4π

∫∫∫

J(r′)

|r− r′| d
3Vol

′
. (8)

For the surface or line currents, this solution becomes

A(r) =
µ0
4π

∫∫

surface

K(r′)

|r− r′| d
2A, (9)

or

A(r) =
µ0
4π

∫

wire

I dr′

|r− r′| . (10)

These Coulomb-like equations for the vector potential lead to the appropriate Biot–

Savart–Laplace equations for the magnetic field B(x, y, z) by simply taking the curl of both

sides. For example, for the volume current J(r′),

B(r) = ∇×A[from eq. (8)] = ∇×
(

µ0
4π

∫∫∫

J(r′)

|r− r′| d
3Vol

′

)

=
µ0
4π

∫∫∫

∇r ×
(

J(r′)

|r− r′|

)

d3Vol
′
=

µ0
4π

∫∫∫
(

∇r

1

|r− r′|

)

× J(r′) d3Vol
′

=
µ0
4π

∫∫∫ −(r− r′)

|r− r′|3 × J(r′) d3Vol
′
=

µ0
4π

∫∫∫

J(r′)× r− r′

|r− r′|3 d
3Vol

′
.

(11)

However, for practical calculations of the magnetic field, it is often easier to first evaluate

the Coulomb-like integrals (8)–(10) for the vector potential and then take its curl, instead

of directly evaluating the appropriate Biot–Savart–Laplace integral.
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Example: Rotating Charged Sphere

Consider a uniformly charged spherical shell of radius R and charge density σ. Let’s

make this sphere spin around its axis with angular velocity ωωωωωωωωωω . Consequently, a point P

on this sphere with radius-vector r′ (counted from the sphere’s center) moves with linear

velocity v = ωωωωωωωωωω × r′, which makes for the surface current density

K(r′) = σv = σ ωωωωωωωωωω × r′. (12)

Let’s find the magnetic field of this current, both inside and outside the sphere.

Instead of using the Biot–Savart–Laplace equation, let’s start by calculating the vector

potential from eq. (9):

A(r) =
µ0
4π

∫∫

sphere

K(r′) = σωωωωωωωωωω × r′

|r− r′| d2A′ =
µ0σ

4π
ωωωωωωωωωω ×

∫∫

sphere

r′

|r− r′| d
2A′. (13)

Note: I use vector notations for the angular velocity ωωωωωωωωωω instead of the spherical coordinates

based on the spin axis because evaluating the integral on the RHS of eq. (13) is easier in

a different system of spherical coordinates. Indeed, once I pull the ωωωωωωωωωω× factor outside the

integral, the remaining integral
∫∫

sphere

r′

|r− r′| d
2A′ (14)

depends only on the r and on the sphere’s radius R, hence by spherical symmetry the vector

obtaining from the integral (13) must point in the direction of r — from the center of the

sphere towards the point where we evaluate the vector potential. Consequently,

A(r) =
µ0σ

4π
(ωωωωωωωωωω × r̂) I (15)

where I is the magnitude of the integral in eq. (13), or equivalently its projection on the r̂

axis, thus

I =

∫∫

sphere

r′ · r̂
|r− r′| d

2A′. (16)

To take this integral, let’s use the spherical coordinates where the “north pole” θ′ = 0 points

in the direction of r so that the θ′ coordinate of some point r′ on the sphere is the angle
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between the vectors r′ and E. Consequently,

r′ · r̂ = R cos θ′, |r− r′|2 = r2 + r′2 − 2r′ · r = r2 + R2 − 2Rr cos θ′, (17)

and hence

I =

∫∫

sphere

R cos θ′√
r2 +R2 − 2Rr cos θ′

×R2 sin θ′ dθ′ dφ′. (18)

The integral over dφ′ here is trivial and yields 2π, while in the integral over dθ′ it’s convenient

to change the integration variable to c = cos θ′. Thus

I = 2πR3

π
∫

0

cos θ′ sin θ′ dθ′√
r2 +R2 − 2Rr cos θ′

= 2πR3

+1
∫

−1

c dc√
r2 +R2 − 2Rrc

. (19)

To evaluate the remaining integral, we expand the denominator into Legendre polynomials

in c,

1√
r2 +R2 − 2Rrc

=



























∑

ℓ

Rℓ

rℓ+1
× Pℓ(c) for r > R (measuring A outside the sphere),

∑

ℓ

rℓ

Rℓ+1
× Pℓ(c) for r < R (measuring A inside the sphere),

(20)

then note that in the numerator c = P1(c) and therefore

+1
∫

−1

Pℓ(c)× c dc =
2

2ℓ+ 1
× δℓ,1 =

{

2
3

for ℓ = 1

0 for any other ℓ.
(21)

Consequently,

I = 2πR3 × 2

3
×















R

r2
outside the sphere,

r

R2
inside the sphere,

(22)

and plugging this result into eq. (15), we finally arrive at the vector potential:

Outside the sphere, A =
µ0σR

4

3

ωωωωωωωωωω × r̂

r2
, (23)
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Inside the sphere, A =
µ0σR

3
(ωωωωωωωωωω × r). (24)

Now that we finally got the vector potential, the magnetic field obtains by taking its

curl. By the double vector product formula,

∇× (ωωωωωωωωωω × r) = ωωωωωωωωωω(∇ · r) − (ωωωωωωωωωω · ∇)r = ωωωωωωωωωω(3) − ωωωωωωωωωω = 2ωωωωωωωωωω , (25)

hence by the Leibniz rule

∇×
(

ωωωωωωωωωω × r̂

r2

)

= ∇×
(

ωωωωωωωωωω × r

r3

)

=

(

∇ 1

r3

)

× (ωωωωωωωωωω × r) +
1

r3
∇× (ωωωωωωωωωω × r)

=
−3r̂

r4
× (ωωωωωωωωωω × r) +

1

r3
(2ωωωωωωωωωω) =

1

r3

(

2ωωωωωωωωωω − 3r̂× (ωωωωωωωωωω × r̂)
)

=
1

r3
(

3r̂(r̂ · ωωωωωωωωωω) − ωωωωωωωωωω
)

.

(26)

Applying these formulae to eqs. (23) and (24), we finally arrive at

Outside the sphere, B =
µ0σR

4

3r3
(

3r̂(r̂ · ωωωωωωωωωω) − ωωωωωωωωωω
)

, (27)

Inside the sphere, B =
2µ0σR

3
ωωωωωωωωωω. (28)

Curiously, the magnetic field inside the sphere turns out to be uniform! Also, outside the

sphere, the magnetic field looks like the field of a pure magnetic dipole with dipole moment

m =
4π

3
R4σωωωωωωωωωω. (29)

I shall explain the magnetic dipoles, quadrupoles, etc., later in these notes.
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Example: Flat Current Sheet

For our next example, consider a flat current sheet in the xy plane with uniform current

density K in the ŷ direction. In terms of the 3D current density,

J(x, y, z) = Kδ(z) ŷ. (30)

Consequently, the Poisson equation for the vector potential of the current sheet is

∇2A = −µ0Kδ(z)ŷ. (31)

Thanks to the symmetries of this equation, we may look for a solution of the form

A(x, y, z) = A(z only) ŷ (32)

where A(z) obey the 1D Poisson equation

d2A

dz2
= −µ0Kδ(z). (33)

Despite the delta function on the RHS, the solution of this differential equation is continuous

at z = 0, namely

A(z) = −1
2
µ0K × |z| , (34)⋆

although its derivative has a discontinuity,

disc(A′) = −µ0K. (35)

⋆ A general solution of eq. (33) is A(z) = − 1

2
µ0K × |z| + αz + β for arbitrary constants α and β, but

the upside-down symmetry z → −z of the current sheet requires α = 0, while β is physically irrelevant.
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This is general behavior of the vector potential for all kinds of 2D current sheets, flat or

curved, with uniform or non-uniform 2D currents: The vector potential is continuous across

the current sheet, but its normal derivative has a discontinuity,

disc

(

∂A

∂xnormal

)

= −µ0K. (36)

Consequently, the magnetic field has a discontinuity

disc(B) = µ0K× n (37)

where n is the unit vector ⊥ to the current sheet.

Multipole Expansion for the Vector Potential

Suppose electric current I flows through a closed wire loop of some complicated shape,

and we want to find its magnetic field far away from the wire. Let’s work through the vector

potential according to the Coulomb-like formula

A(r) =
µ0
4π

∮

wire

I dr′

|r− r′| . (38)

Far away from the wire, we may expand the denominator here into a power series in (r′/r),

thus

1

|r− r′| =

∞
∑

ℓ=0

r′ℓ

rℓ+1
× Pℓ(cosα) (39)

where α is the angle between the vectors r and r′,

cosα = r̂ · r̂′. (40)

Plugging the expansion (39) into eq. (38)for the vector potential, we obtain

A(r) =
µ0I

4π

∞
∑

ℓ=0

1

rℓ+1

∮

wire

r′ℓPℓ(r̂ · r̂′) dr′ (41)

— the expansion of the vector potential into magnetic multipole terms. Let me write down
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more explicit formulae for the three leading terms,

A(r) =
µ0I

4π

























1

r

∮

dr′ 〈〈monopole 〉〉

+
1

r2

∮

(r̂ · r′) dr′ 〈〈 dipole 〉〉

+
1

r3

∮

(3
2
(r̂ · r′)2 − 1

2
r′2) dr′ 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉

























. (42)

Naively, the leading term in this expansion is the monopole term for ℓ = 0 (the top line in

eq. (42)), but it vanishes for any closed current loop,

∮

dr′ = 0 (43)

Thus, the magnetic multipole expansion starts with the dipole term — which dominates the

magnetic field at large distances from the wire loop. (Except when the dipole moment

happens to vanish.)

Let’s simplify the dipole term in (42) using a bit of vector calculus, Let c be some

constant vector. Then

c ·
∮

(r̂ · r′) dr′ =

∮

(r̂ · r′) c · dr′

〈〈 by Stokes’ theorem 〉〉

=

∫∫

(

∇r′ ×
(

(r̂ · r′) c
)

)

· d2A

(44)

where

∇r′ ×
(

(r̂ · r′) c
)

=
(

∇r′(r̂ · r′)
)

× c = r̂× c (45)

hence

c ·
∮

(r̂ · r′) dr′ =

∫∫

(r̂× c) · d2A = (r̂× c) ·
∮

d2A

= (r̂× c) · a 〈〈where a is the vector area of the loop 〉〉

= c · (a× r̂),

(46)
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and therefore
∮

(r̂ · r′) dr′ = a× r̂. (47)

Plugging this integral into the dipole term in the expansion (42), we arrive at

Adipole(r) =
µ0
4π

m× r̂

r2
(48)

where m = Ia is the magnetic dipole moment of the current loop.

I am going to skip over the higher multipoles in these notes. Instead, let me consider

replacing a single wire loop with a circuit of several connected wires. In this case, we may use

the Kirchhoff Law to express the whole circuit as several overlapping loops with independent

currents; if a wire belongs to several loops, the current in that wire is the algebraic sum of

the appropriate loop currents. By the superposition principle. the vector potential of the

whole circuit is the sum of vector potentials of the individual loops, and as long as the whole

circuit occupies small volume of size ≪ r, we may expand each loop’s A into multipoles,

exactly as we did it for a single loop. In general, the leading contribution is the net dipole

term,

Adipole(r) =

loops
∑

i

µ0
4π

mi × r̂

r2
=

µ0
4π

mnet × r̂

r2
(49)

where

mnet =

loops
∑

i

mi =

loops
∑

i

Ii ai (50)

is the net dipole moment of the whole circuit.

Now suppose instead of a circuit of thin wires we have some current density J(r′) flowing

through the volume of some thick conductor. However, the conductor have small size in

all directions, much smaller than the distance r to where we want to calculate the vector

potential and the magnetic field. In this case, we may use the multipole expansion, but the
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algebra is a bit different from what we had for a thin wire:

A(r) =
µ0
4π

∫∫∫

J(r)

|r− r′| d
3Vol

′
=

µ0
4π

∞
∑

ℓ=0

1

rℓ+1

∫∫∫

r′ℓPℓ(r̂ · r̂′)J(r′) d3Vol
′
, (51)

or in a more explicit form

A(r) =
µ0I

4π

























1

r

∫∫∫

J(r′) d3Vol
′ 〈〈monopole 〉〉

+
1

r2

∫∫∫

(r̂ · r′)J(r′) d3Vol′ 〈〈 dipole 〉〉

+
1

r3

∫∫∫

(3
2
(r̂ · r′)2 − 1

2
r′2)J(r′) d3Vol

′ 〈〈 quadrupole 〉〉

+ · · · 〈〈 higher multipoles 〉〉

























. (52)

The monopole term here vanishes just as it did for the wire loop, albeit in a less obvious

way. To see how this works, pick a constant vector c and take the divergence

∇r′ ·
(

(c · r′)J(r′)
)

= c · J + (c · r) (∇ · J), (53)

where the second term on the RHS vanishes for a steady — and hence divergence-less —

current. Consequently,

c ·
∫∫∫

V

J(r′)d3Vol
′
=

∫∫∫

V

(c · J(r′)) d3Vol′

〈〈 by eq. (53) 〉〉

=

∫∫∫

V

∇r′ ·
(

(c · r′)J(r′)
)

d3Vol
′

=

∫∫

S

(

(c · r′)J(r′)
)

· d2A

(54)

where S is the surface of the volume V. That volume must include the whole conductor,

but we may also make it a bit bigger, which would put the surface S outside the conductor.

But then there would be no current along or across S, so the integral on the bottom line
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of (54) must vanish. Consequently, the top line of eq. (54) must vanish too, and since c is

an arbitrary constant vector, this means zero monopole moment,

∫∫∫

V

J(r′)d3Vol
′
= 0. (55)

Next, consider the dipole term in (52) and try to rewrite it in the form (48) for some

dipole moment vector m. This time, the algebra is a bit more complicated. For an arbitrary

but constant vector c, we have

c ·
(

r̂× (J× r′)
)

= (c · J) (r̂ · r′) − (c · r′) (r̂ · J), (56)

∇r′

(

(c · r′) (r̂ · r′)J(r′)
)

= (c · J) (r̂ · r′) + (c · r′) (r̂ · J) + (c · r′) (r̂ · r′) (∇ · J), (57)

〈〈where the last term vanishes for a steady current. 〉〉

〈〈which has ∇ · J = 0 〉〉

and hence

(c · J) (r̂ · r′) = 1
2
c ·

(

r̂× (J× r′)
)

+ 1
2
∇r′

(

(c · r′) (r̂ · r′)J(r′)
)

. (58)

Consequently, dotting c with the dipole integral, we obtain

c ·
∫∫∫

V

(r̂ · r′)J(r′) d3Vol′ =

∫∫∫

V

(c · J) (r̂ · r′) dv′

=
1

2

∫∫∫

V

(

c ·
(

r̂× (J× r′)
)

)

d3Vol

+
1

2

∫∫∫

V

(

∇r′

(

(c · r′) (r̂ · r′)J(r′)
)

)

d3Vol

=
1

2
c ·



r̂×
∫∫∫

V

(J(r′)× r′) d3Vol





+
1

2

∫∫

S

(c · r′) (r̂ · r′)J(r′) · d2A

(59)

As for the monopole terms, let’s take the integration volume V a bit larger that the whole

conductor, so its surface S is completely outside the conductor. Then on the last line of
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eq. (59) the current J vanishes everywhere on the surface, so the surface integral vanishes.

Consequently,

c ·
∫∫∫

V

(r̂ · r′)J(r′) d3Vol′ =
1

2
c ·



r̂×
∫∫∫

V

(J(r′)× r′) d3Vol
′



 , (60)

and since c is an arbitrary constant vector,

∫∫∫

conductor+

(r̂ · r′)J(r′) d3Vol′ = 1
2
r̂×

∫∫∫

conductor+

J(r′)× r′ d3Vol
′

=





1

2

∫∫∫

conductor+

r′ × J(r′) d3Vol
′



× r̂.

(61)

Plugging this formula into the dipole term in the vector potential (52), we arrive at

Adipole(r) =
µ0
4πr2

∫∫∫

conductor+

(r̂ · r′)J(r′) d3Vol′ =
µ0
4π

m× r̂

r2
(62)

— exactly as in eq. (48) for the current loop — for the magnetic dipole moment

m =
1

2

∫∫∫

conductor+

r′ × J(r′) d3Vol
′
. (63)

Let me conclude this section with the dipole term in the magnetic field,

Bdipole(r) = ∇×Adipole(r) =
µ0
4π

3(m · r̂)r̂ − m

r3
, (64)

where the algebra of taking the curl is exactly as in eq. (26) earlier in these notes. In spherical

coordinates centered at the dipole and aligned with the dipole moment,

A =
µ0m

4π

sin θ

r2
φ̂φφφφφφφφφ, (65)

B =
µ0m

4π

2 cos θ r̂ + sin θθ̂θθθθθθθθθ

r3
. (66)
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Force and Torque on a Magnetic Dipole

The B field (64) of a magnetic dipole looks exactly like the E field of an electric dipole:

Bdipole =
µ0
4π

3(m · r̂)r̂ − m

r3
, Edipole =

1

4πǫ0

3(p · r̂)r̂ − p

r3
. (67)

Likewise, the force and the torque on a pure magnetic dipole in an external magnetic field

have exactly similar form to the force and the torque on an electric dipole in an external

electric field (see my notes on electric dipoles for details). In particular, in a uniform external

B field, there is no net force on a dipole but there is a net torque,

Fnet = 0, ττττττττττ net = m×B. (68)

In fact, in a uniform B field these formulae are exact for any closed current loop rather than

just a pure dipole. For the net force, this is trivial,

Fnet =

∮

Id~ℓ×B = I

(
∮

d~ℓ = 0

)

×B = 0. (69)

For the net torque, we need some algebra first:

d
(

r× (r×B)
)

= dr× (r×B) + r× (dr×B), (70)

B× (dr× r) = −dr × (r×B) − r× (B× dr) 〈〈 by the Jacobi identity 〉〉

= −dr × (r×B) + r× (dr×B), (71)

hence r× (dr×B) = 1
2
d
(

r× (r×B)
)

+ 1
2
B× (dr× r). (72)

Consequently,

ττττττττττ net =

∫

r× dF =

∮

r× (I dr×B)

〈〈 in light of eq. (72) 〉〉

=
I

2

∮

d
(

r× (r×B)
)

+
I

2

∮

B× (dr× r)

〈〈where the first
∮

of a total differential is zero 〉〉

= 0 + B× I

2

∮

dr× r

= B× Ia = B×m.

(73)
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When the external magnetic field is non-uniform the net force on a current loop does

not vanish. For a small loop, the net force is related to the magnetic moment as

Fnet = ∇(m ·B) (74)

where the gradient acts only on the components of B and not on the m. Let me skip the

proof of this formula and simply say that it is completely similar to the force on an electric

dipole in a non-uniform electric field,

Fnet = (p · ∇)E = ∇(p · E). (75)

(Note that ∇(p · E)− (p · ∇)E = p× (∇×E) = 0 since ∇× E = 0.)

For atoms and molecules, the magnetic dipole moment is fixed by the quantum effects.

Consequently, the magnetic force (74) on an atom or a molecules acts as a potential force,

with a potential energy

U(x, y, z) = −m ·B(x, y, z). (76)

The same potential energy — or rather its variation when the magnetic moment m changes

its direction — is also responsible for magnetic the torque ττττττττττ = m×B.
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