
Inductance and Magnetic Energy

Mutual Inductance

Consider two wire loops or coils. Their geometries can be completely general, and there

might be some magnetic materials inside the coils or around them — for example, iron cores

— but let’s assume that all the magnetic materials involved are linear (B = µµ0H). Let’s

run a steady current I1 through the coil#1, so it creates a magnetic field B1(r), which in turn

has flux Φ2 through the coil#2. Regardless of the gory details of the two coils’ geometries

or any linear magnetic materials, which may be present, the field B1(r) at any point r is

proportional to the current I1 which creates it, so the flux Φ2 through the second coil is also

proportional to that current,

Φ2 = M21 × I1 (1)

for some current-independent coefficient M21. This coefficient is called themutual inductance

of the two coils.

Now let’s slowly vary the current I1 through the first coil with the time t. As long as

this change is slow enough, we may use the quasi-static approximation for the magnetic field

B1(r, t) created by this current, hence the magnetic flux through the second coil varies with

time according to

Φ2(t) = M21 × I1(t). (2)

The time derivative of this flux produces the electromotive force (EMF) in the second coil,

E2 = −
dΦ2

dt
= −M21 ×

dI1
dt

. (3)

For example, the AC current I1(t) = I
(0)
1 × cos(ωt) through the first coil induces the AC

voltage

E2 = M21ω × sin(ωt) (4)

in the second coil. These formulae are very important for the transformers.
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The MKSA unit of mutual inductance — and also of self-inductance explained later

in these notes — is called henry [after American scientist Joseph Henry (1797–1878)] and

denoted H,

1 H× 1 A = 1 W (Weber) = 1 T× 1 m2 = 1 V× 1 s. (5)

In Gaussian units, the mutual inductance is defined with an extra factor of c in eq. (1),

Φ2 = c×M21 × I1 (6)

to compensate for the 1/c factor in the Induction Law so that eq. (3) looks similarly in both

unit systems,

E2 = −
1

c

dΦ2

dt
= −M21 ×

dI1
dt

. (7)

The Gaussian unit if mutual inductance or self-inductance does not have a proper name, but

by dimensional analysis it’s equivalent to s2/cm:

1 (Gaussian unit of inductance) =
statV

(Fr/s)/s
=

s2

Fr/statV
=

s2

cm
. (8)

A very useful theorem for calculating the mutual inductances of coils is the symmetry

theorem: for any two wire loops or coils, of whatever geometry, in presence or absence of

any magnetic materials of whatever shapes, as long as all such magnetic materials are linear,

M21 = M21 (9)

Let me prove this theorem for the coils without iron cores or any other magnetic materials

involved. In this case, the magnetic field due to current in the coil#1 obtains from the

Biot–Savart–Laplace formula, or in terms of the vector potential,

A1(r) =
µ0I1
4π

∮

loop#1

dr1
|r− r1|

. (10)
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The magnetic flux Φ2 through the coil#2 obtains from this vector potential as

Φ2 =

∫∫

a surface spanning coil#2

B1 · d
2a =

∮

coil#2 itself

A1(r2) · dr2 (11)

where the second equality follows by the Stokes theorem. Consequently,

Φ2 =

∮

coil#2

r2 ·







µ0I1
4π

∮

coil#1

dr1
|r1 − r2|






=

µ0I1
4π

∮ ∮

r1∈coil#1
r2∈coil#2

dr1 · dr2
|r1 − r2|

, (12)

which means that the mutual inductance M21 of the two coils is

M21 =
µ0
4π

∮ ∮

r1∈coil#1
r2∈coil#2

dr1 · dr2
|r1 − r2|

. (13)

This formula is manifestly symmetric between the two coils, thus M21 = M12, quod erat

demonstrandum.

Example: two coaxial solenoidal coils.

Specifically, let the first coil be both shorter and narrower than the second coil, and let’s

put the first coil in the middle of the hollow space inside the second coil. Let’s also assume

that the second coil’s length is much larger than its diameter. In this case, calculating the

mutual inductance M12 is rather easy: The current I2 in the second coil creates a uniform

magnetic field

B2 =
µ0N2I2

L2
ẑ (14)

everywhere inside that coil, including the coil#1, so the flux of this field through the coil#1

is

Φ1 = B2 × πr21N1 =
µ0N2I2
L2

× πr21N1 = µ0N1N2 ×
πr21
L2

× I2 . (15)

In terms of the mutual inductance, this means

M12 = µ0N1N2 ×
πr21
L2

. (16)

On the other hand, the direct calculation of the M21 mutual inductance is much harder.

Indeed, the magnetic field of the current I1 in the first coil is approximately uniform inside
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that coil, but become rather complicated near its poles; and since the poles of the first coil

are inside the second coil, calculating the net magnetic flux through the second coil becomes

quite a challenge. Fortunately, the symmetry theorem allows us to avoid this hard calculation

and simply use

M21 = M12 = µ0N1N2 ×
πr21
L2

. (17)

Example: two coils on a common toroidal iron core.

The current I1 in the first coil creates magnetic field

outside the toroid H = 0,

inside the toroid H =
N1I1
2πs

φ̂,
(18)

hence

outside the toroid B = 0,

inside the toroid B = µµ0
N1I1
2πs

φ̂,
(19)

where µ is the permeability of the iron in the toroid. For simplicity, let’s assume the toroid

is shaped like a bicycle tire rather than like a donut, so inside the toroid s ≈ const = large

radius R. This makes for approximately uniform magnetic field inside the toroid, so if its

cross-sectional area is A then the flux through the toroid is

Φ ≈ µµ0
N1I1
2πR

A. (20)

The second coil has this flux going through each of its loops, hence

Φ2 = N2 × Φ = µµ0N1N2
A

2πR
× I2 , (21)

which means the mutual induction of the two coils is

M21 = M12 = µµ0N1N2
A

2πR
. (22)

Note manifest symmetry of this formula between the 2 coils.
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Self-Inductance and RL Circuits

Now consider a single coil, with or without an iron core. The current I through the coil

creates magnetic field B(r), which has some flux Φ through the coil itself. By linearity,

Φ = L× I (23)

for some coefficient L called the self-inductance of the coil; a less common name for the same

coefficient is the inductivity. For example, consider a solenoidal coil with an iron core. A

current I flowing through the coil creates approximately uniform field

B = µµ0
NI

ℓ
ẑ (24)

inside the core, and negligible B ≈ 0 outside the core. The flux of this field through the coil

itself is

Φ = N × A× B = µµ0N
2A

ℓ
× I (25)

where A is the cross-sectional area of the core, which means the self-inductance of the coil is

L = µµ0N
2 A

ℓ
. (26)

When the current I changes with time, but slowly enough to use the quasi-static ap-

proximation, the flux changes with time as Φ(t) = L× I(t), which induces EMF in the coil

according to

E(t) = −
dΦ

dt
= −L×

dI

dt
. (27)

The minis sign here stems from the Lenz rule: the induced EMF resists changing the current

flowing through the coil.
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As an example of this Lenz rule in action, consider the following circuit

When the switch is closed, the light bulb and the coil receive the same voltage from the

battery, but since the Ohmic resistance of the coil is much less than the resistance of the

bulb, the current through the coil is much stronger than the current through the bulb. In

fact, the current through the bulb is rather weak, so the bulb barely light up and stays

rather dim. But when the switch is suddenly thrown open, the current which used to flow

through the coil cannot stop right away — the coil’s self-inductance prevents this according

to eq. (27). Instead, this strong current has to flow through the bulb — which makes it flush

bright. However, this flash lasts only a short time, as the current through the coil and the

bulb decays rather fast.

Let’s calculate the time scale and the manner of this decay. For simplicity let’s treat the

light bulb as a resistor of a constant resistance Rb. The current through the resulting RL

circuit follows from the EMF in the coil by the Ohm’s Law,

E = IRc + IRb = IR (28)

where Rc is the Ohmic resistance of the coil and R = Rb+Rc is the net resistance of the RL

circuit. At the same time, the EMF follows from the time derivative of the current according

to eq. (27), hence

dI

dt
= −

E

L
= −

RI

L
. (29)

Solving this differential equation with the initial condition I(t = 0) = I0 gives us exponential
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decay

I(t) = I0 × exp(−t/τ) (30)

with the time constant

τ =
L

R
(31)

For example, in the demo shown in the freshmen E&M class, the big coil has self-inductance

about L ≈ 2 H while the light bulb has resistance about R ≈ 100 Ω, hence a rather short

the time constant τ ≈ 0.02 seconds.

Magnetic Energy

Consider what happens when one tries to increase the current I(t) flowing through an

inductor coil. The coil’s self-inductance F leads to EMF

Ecoil = −L
dI

dt
(32)

which resists changing the current and performs negative work

dWcoil = Ecoil × dQ = −L
dI

dt
× I dt = −L× I × dI.

Note that this negative work is independent of the time it takes to change the current! This

negative work has to be overcome by the positive work of the battery,

dWbattery = −dWcoil = +LI dI, (33)

hence for a finite change of the current,

Wnet =

I2
∫

I1

LI dI =
L

2

(

I22 − I21 ). (34)

This work is stored as the magnetic energy of the inductor coil,

Umag =
LI2

2
, (35)

which may be later used up to power some circuit for a short time, for example the light

bulb in the example on the previous page.
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Indeed, let’s show that the net energy dissipated by the Ohmic resistance R in the RL

circuit while the current is exponentially decaying is precisely the magnetic energy (35)

stored in the inductor: The dissipated power is

P (t) = R× I2(t) = R× I20 × exp(−2t/τ), (36)

hence net dissipated energy

Wnet =

∞
∫

0

P (t) dt =

∞
∫

0

RI20 exp(−2t/τ) dt = RI20 ×
τ

2
(37)

where R× τ = L according to eq. (31), thus

Wnet =
LI20
2

, (38)

— which is precisely the initial energy stored in the inductor according to eq. (35).

Now let’s relate the inductor coil energy (35) to the magnetic field in the inductor. For

a coil of most general geometry,

U =
LI2

2
=

I

2
× Φcoil =

I

2
×

∮

coil

A · d~ℓ. (39)

We may generalize this formula from a coil made form a thin wire to a thick conductor with

some free current Jf flowing through its volume by simply changing Id~ℓ to Jd3Vol, thus

U =
1

2

∫∫∫

A · Jf d
3Vol. (40)

Moreover, by Ampere’s Law Jf = ∇×H, hence

A · J = A · (∇×H) = ∇ · (H×A) + H · (∇×A) = ∇ · (H×A) + H ·B. (41)
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Consequently, the magnetic energy becomes

U =
1

2

∫∫∫

V

H ·B d3Vol +
1

2

∫∫∫

V

∇ · (H×A) d3Vol

=
1

2

∫∫∫

V

H ·B d3Vol +
1

2

∫∫

S

(H×A) · d2a,

(42)

where V is some volume which includes all the current-carrying conductors, and S is the

complete surface of that volume, whatever it is. We can take the volume V to be as large

as we want, so let’s make it a ball of very large radius R. In the limit R → ∞, the surface

integral in eq. (42) vanishes; indeed, very far from all the currents,

A ∝
1

R2
, H ∝

1

R3
, Area(S) = 4πR2, (43)

hence
∫∫

S

(H×A) · d2a ∝
1

R3
−−→
R→0

0. (44)

In the same R → ∞ limit, the volume integral over V becomes the integral over the whole

space, thus

Umagnetic =
1

2

∫∫∫

whole
space

H ·B d3Vol. (45)

Example: toroidal coil.

Earlier in these notes we have calculated the self-inductance of a toroidal coil with an iron

core as

L =
µµ0N

2A

2πR
, (46)

so the net magnetic energy stored in this coil is

U =
LI2

2
=

µµ0N
2A

2πR
×

I2

2
(47)

where I is the current through the coil. The magnetic fields H and B created by this coil
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are negligibly small outside the iron toroid, while inside the toroid

H ≈
NI

2πR
φ̂ , B = µµ0H, =⇒ H ·B ≈ µµ0

(

NI

2πR

)2

. (48)

The energy (45) of these magnetic fields is therefore

Umagnetic =
1

2

∫∫∫

whole
space

H ·B d3Vol ≈
1

2

∫∫∫

toroid

H ·B d3Vol

≈
1

2

(

approx. constant H ·B
)

×
(

volume of the toroid
)

=
1

2
× µµ0

(

NI

2πR

)2

× 2πRA

=
I2

2
×

µν0N
2A

2πR
,

(49)

in perfect agreement with eq. (47) for the magnetic energy of the coil.

This example is rather similar to the electric energy stored in a capacitor: we can

calculate it as simply

Ucapacitor =
CV 2

2
=

Q2

2C
, (50)

or we may calculate the electric tension and displacement fields E andD inside the capacitor,

and then obtain their energy as

Uelectric =
1

2

∫∫∫

whole
space

E ·D d3Vol, (51)

we would get the same net energy either way.

Note the remarkable similarity between the electric energy (51) and the magnetic en-

ergy (45). Microscopically — or in vacuum — these energies become

Uelectric =
ǫ

2

∫∫∫

whole
space

E2 d3Vol, Umagnetic =
1

2µ0

∫∫∫

whole
space

B2 d3Vol (52)
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in MKSA units, or

Uelectric =
1

8π

∫∫∫

whole
space

E2 d3Vol, Umagnetic =
1

8π

∫∫∫

whole
space

B2 d3Vol (53)

in Gaussian units. The similarity between these energies reflect similar behavior of the

electric and magnetic fields in vacuum, the only difference being the way the E/B fields couple

to the electric charges and currents. Indeed, had the Nature provided us with both electric

and magnetic charges and currents, the similarity between the electric and the magnetic

fields would be complete!
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