
ELECTRIC DIPOLES

In these notes, I write down the electric field of a dipole, and also the net force and the

torque on a dipole in the electric field of other charges. For simplicity, I focus on ideal dipoles

— also called pure dipoles — where the distance a between the positive and the negative

charges is infinitesimal, but the charges are so large that the dipole moment p is finite.

Electric Field of a Dipole

The potential due to an ideal electric dipole p is

V (r) =
p · r̂

4πǫ0 r2
, (1)

or in terms of spherical coordinates where the North pole (θ = 0) points in the direction of

the dipole moment p,

V (r, θ) =
p

4πǫ0

cos θ

r2
. (2)

Taking (minus) gradient of this potential, we obtain the dipole’s electric field

E =
p

4πǫ0

(
2 cos θ

r3
∇r +

sin θ

r2
∇θ

)
=

p

4πǫ0

1

r3

(
2 cos θ r̂ + sin θ θ̂θ

)
. (3)

In this formula, the unit vectors r̂ and θ̂θ themselves depend on θ and φ. Translating them

to Cartesian unit vectors, we have

r̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ,

θ̂θ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,
(4)

hence

2 cos θ r̂ + sin θ θ̂θ = 3 sin θ cos θ(cosφ x̂+ sin φ ŷ) + (2 cos2 θ−sin2 θ = 3 cos2 θ−1) ẑ, (5)
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and therefore

Ex(r, θ, φ) =
p

4πǫ0

3 sin θ cos θ cos φ

r3
,

Ey(r, θ, φ) =
p

4πǫ0

3 sin θ cos θ sin φ

r3
,

Ez(r, θ, φ) =
p

4πǫ0

3 cos2 θ − 1

r3
.

In terms of the (x, y, z) coordinates

Ex(x, y, z) =
p

4πǫ0

3xz

(x2 + y2 + z2)5/2
,

Ey(x, y, z) =
p

4πǫ0

3yz

(x2 + y2 + z2)5/2
,

Ez(x, y, z) =
p

4πǫ0

2z2 − x2 − y2

(x2 + y2 + z2)5/2
,

(6)

or in vector notations,

E(r) =
3(p · r̂)r̂ − p

4πǫ0 r3
. (7)

Note that along the dipole axis the electric field points in the direction of the dipole

moment p, while in the plane ⊥ to the dipole axis the field points in the opposite direction

from the dipole moment. To get a more general pocture of the dipole’s electric field, here is

the diagram of the electric field lines in the xz plane:
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Force and Torque on a Dipole

Now consider an ideal dipole p placed in an electric field E(x, y, z) due to some other

sources. If this electric field is uniform, there is no net force on the dipole but there is a net

torque. Indeed, the force F+ = +qE acting on the positive charge cancels the opposite force

F− = −qE = −F+ acting on the negative charge — so the net force is zero — but the two

forces are acting at different points, which causes a torque. Specifically, the net torque of

the two forces is

~τ = r+ × F+ + r− × F− = (r+ − r−)× qE = q(r+ − r−)×E, (8)

or in terms of the dipole moment p = q(r+ − r−),

~τ = p× E. (9)

This torque vanishes when the dipole moment p is parallel to the electric field E. Otherwise,

the torque twists the dipole trying to make it align with the field, p → p′ ↑↑ E.

When the electric field E(x, y, z) is not uniform, the two charges of the dipole feel slightly

different electric fields, so the net force on the dipole does not quite vanish:

Fnet = q
(
E(r+) − E(r−)

)
6= 0. (10)

but for small displacements a = r+− r− between the charges, we may expand the difference

between the electric fields acting on them into a power series in a. Let r± = r± 1
2
a where r

is the center of the dipole; then

E(r±) = E(r) ± (1
2
a · ∇)E

∣∣∣
@r

+ 1
2
(1
2
a · ∇)2E

∣∣∣
@r

± 1
6
(1
2
a · ∇)3E

∣∣∣
@r

+ · · · , (11)

hence the difference

E(r+) − E(r−) = (a · ∇)E
∣∣∣
@r

+ 1
24
(a · ∇)3E

∣∣∣
@r

+ · · · , (12)

so the net force on the dipole is

Fnet = q(a · ∇)E
∣∣∣
@r

+
q

24
(a · ∇)3E

∣∣∣
@r

+ · · · . (13)

For a physical dipole with a finite distance a between the two charges, we must generally
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take into account all the subleading terms in this expansion. But for an ideal dipole we take

the limit a → 0 while p = q × a stays finite, so in this limit q × an → 0 for any n > 1.

Consequently, the leading term q(a ·∇)E in eq. (13) stays finite, but all the subleading terms

q(a · ∇)nE vanish in the pure dipole limit. Thus, the net force on an ideal dipole is simply

Fnet = (p · ∇)E(r). (14)

Similar to the net force, the net potential energy of a dipole obtains as

Unet = qV (r+) − qV (r−) (15)

where

V (r±) = V (r) ± (1
2
a · ∇)V (r) + 1

2
(1
2
a · ∇)2V (r) ± 1

6
(1
2
a · ∇)3V (r) + · · · (16)

and therefore

Unet = q(a · ∇)V (r) + 1
24

q(a · ∇)3V (r) + · · · (17)

Again, for a real dipole with a finite distance a between the two charges we should generally

take into account all terms in this series, but for a pure dipole with a → 0 (but finite p = qa)

the subleading terms become negligible compared to the leading term

qa · ∇V (r) = −p · E(r). (18)

Thus, an ideal dipole with moment p located at point r has net potential energy

U(r,p) = −p · E(r). (19)
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The potential energy (19) accounts for the mechanical work of the force (14) when the

dipole is moved around and also for the work of the torque (9) when the dipole is rotated;

thus, both the force (14) and the torque (9) are conservative. To see how this works, consider

infinitesimal dosplacements and rotations of the dipole,

r → r + ~α, p → p + ~ϕ× p (20)

for some infinitesimal vectors ~α and ~ϕ. The work of the force (14) and the torque (9) due

to such combined displacement and rotation is

δW = ~α · F + ~ϕ · ~τ = ~α ·
[
(p · ∇)E(r)

]
+ ~ϕ ·

[
p× E(r)

]
, (21)

so let’s check that the infinitesimal variation of the energy (19) agrees with

δW = −δU(r,p). (22)

Indeed,

−δU = +δp · E(r) + p ·
[
δE(r) = (δr · ∇)E(r)

]

= (~ϕ× p) ·E(r) + p ·
[
(~α · ∇)E(r)

]
,

(23)

where the first term has form (a× b) · c = c · (a× b) = b · (c× a), thus

1st term = (~ϕ× p) · E(r) = ~ϕ · (p× E(r)) ≡ ~ϕ× τ, (24)

which is precisely the torque term in the work (21). As to the second term in eq. (23),

2nd term = p ·
[
(~α · ∇)E(r)

]
= −p ·

[
(~α · ∇)∇V (r)

]

= −(~α · ∇)(p · ∇)V (r) = −~α ·
[
(p · ∇)∇V (r)

]

= +~α ·
[
(p · ∇)E(r)

]
≡ ~α · F,

(25)

which is precisely the force term in the work (21). And this proves that the force (14) and

the torque (9) on the dipole are indeed conservative and their work is accounted by the

potential energy (19).
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To be precise, the torque (9) is the torque relative to the dipole center r. In a non-uniform

electric field, the torque relative to some other point r0 has an extra term due to the net

force (14) on the dipole, thus

~τ net = (r− r0)× Fnet + ~τ relative to r = (r− r0)× (p · ∇)E(r) + p×E(r). (26)

This net torque may also be obtained from the potential energy U— or rather its infinitesimal

variation under simultaneous rotations of the dipole moment vector p and of radius vector

r− r0 of the dipole from the reference point r0 — but I am not going to work it out in these

notes.
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