
Classical and Quantum Mechanics

of a Charged Particle Moving

in Electric and Magnetic Fields

Classical Mechanics

In this section I describe the Lagrangian and the Hamiltonian formulations of classical

mechanics of a charged particle moving in general electric and magnetic fields. The fields

E(r, t) and B(r, t) may be time-dependent, but I take their time-dependence as given; the

effects of a moving charged particle on the EM fields themselves will be explored in the

second half of the classical electrodynamics class (PHY 352 L).

In a purely electrostatic field E(r) the net force F = qE(r) acting on a charged particle

is a potential force. Consequently, the Lagrangian and the Hamiltonian of the particle’s

dynamics involve the scalar potential V (r) rather then the electric field E itself, thus

L(r,v) =
m

2
v2 − qV (r), (1)

H(r,p) =
p2

2m
+ qV (r). (2)

Likewise, when we turn on a magnetic fieldB(r), the Lagrangian and the Hamiltonian involve

the vector potential A(r) rather than magnetic field B itself. Specifically, the Lagrangian

becomes

L(r,v) =
m

2
v2 − qV (r) + qv ·A(r) (3)

in MKSA units, or

L(r,v) =
m

2
v2 − qV (r) +

q

c
v ·A(r) (4)

in Gauss units. Arguably, the vector-potential term in this Lagrangian is a relativistic

correction to the scalar-potential term, but I don’t want to get into special relativity in

these notes. Instead, I am going to justify the Lagrangian (3) by showing that it leads to

the Euler–Lagrange equation of motion which agrees with the Newton’s Second Law for the
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usual electric+magnetic force,

ma = Fnet = qE(r) + qv×B(r). (5)

But first, let me remind you that for the time-dependent electromagnetic fields

B = ∇×A, (6)

E = −
∂A

∂t
− ∇V, (7)

where the first equation assures ∇·B = 0, come hell or high water, while the second equation

leads to the Induction Law

∇×E = −∇×
∂A

∂t
− ∇×∇V = −

∂

∂t

(

∇×A
)

− 0 = −
∂

∂t
B. (8)

Now, with these relations in mind, let’s derive the Euler-Lagrange equations of motion

d

dt

(

∂L(r,v)

∂v

)

= +
∂L(r,v)

∂r
(9)

for the Lagrangian (3). The first step is the canonical momentum

p
def
=

∂L

∂v
= mv + qA(r). (10)

Note: In the vector potential term qA(r), the r is the time-dependent particle’s position

rather than some fixed point in space. Making the time dependence explicit, we have

p(t) = mv(t) + qA(r(t), t) (11)

where the second argument of the vector potential allows for a time-dependent magnetic
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field. Consequently,

d

dt
A(r(t), t) =

(

∂A

∂t

)

@fixed r

+

(

dr

dt
· ∇

)

A =
∂A

∂t
+ (v · ∇)A (12)

and therefore

dp

dt
= m

dv

dt
+ q

∂A

∂t
+ (v · ∇)A. (13)

On the other hand, the Euler–Lagrange equation (9) for the Lagrangian (3) reads

dp

dt
= +

∂L

∂r
= −q∇V + q∇(v ·A). (14)

Equating the right hand sides of the last two formulae, we arrive at

m
dv

dt
+ q

∂A

∂t
+ (v · ∇)A = −q∇V + q∇(v ·A) (15)

and hence

ma
def
= m

dv

dt
= q

(

−∇V −
∂A

∂t

)

+ q
(

∇(v ·A) − (v · ∇)A
)

. (16)

In light of eq. (7), the first group of terms on the RHS here is simply the electric force qE.

As to the second group of terms, it amounts to the Lorentz magnetic force qv×B. Indeed,

by the B(AC)− C(AB) rule for a double vector product A× (B × C), we have

v×B = v × (∇×A) = ∇(v ·A) − (v · ∇)A, (17)

exactly as in eq. (16). Altogether, the Lagrangian (3) and hence eq. (16) gives a simple

equation of motion for the charged particle in EM fields,

ma(t) = qE(r, t) + qv(t)×B(r, t). (18)

Physically, we know this equation of motion is correct, and that’s what justifies the Lagran-

gian (3).
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Next, consider the classical Hamiltonian for the charged particle. By the usual rules of

classical mechanics, the Hamiltonian follows from the Lagrangian as

H(r,p) =
∂L(r,v)

∂v
· v − L(r,v), (19)

where the RHS should be re-expressed in terms of the position r and the canonical momentum

p = ∂L/∂v rather than the position and the velocity. For the Lagrangian (3), the canonical

momentum

p = mv + qA(r) (10)

is different from the usual kinematic momentum mv. Consequently, while

H = p · v − L = mv2 + qA · v − 1

2
mv2 + qV − qv ·A = 1

2
mv2 + qV (r) (20)

seems to be independent of the vector potential, this is an artefact of writing H as a function

of the velocity and position. When we rewrite this Hamiltonian as a function of the canonical

momentum instead of the velocity, the A–dependence becomes manifest:

v =
p− qA(r)

m
(21)

and therefore

H(r,p) =
1

2m

(

p − qA(r)
)2

+ qV (r). (22)
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Quantum Mechanics

In quantum mechanics, the classical dynamical variables like positions and momenta be-

come linear operators in the Hilbert space of quantum states. Some of these linear operators

do not commute with each other, ÂB̂ 6= B̂Â. In particular, the position and the canonical

momentum operators obey the canonical commutation relations

r̂ir̂j − r̂j r̂i = 0,

p̂ip̂j − p̂j p̂i = 0,

r̂ip̂j − p̂j r̂i = ih̄δi,j ,

for i, j = x, y, z.

(23)

In terms of the wave-functions of coordinates ψ(x, y, z), the position operators act by mul-

tiplication

x̂ψ(x, y, z) = x× ψ(x, y, z), ŷψ(x, y, z) = y × ψ(x, y, z), ẑψ(x, y, z) = z × ψ(x, y, z),

(24)

while the canonical momenta act as space derivatives

p̂xψ(x, y, z) = −ih̄
∂ψ

∂x
, p̂yψ(x, y, z) = −ih̄

∂ψ

∂y
, p̂zψ(x, y, z) = −ih̄

∂ψ

∂y
. (25)

Note that for a charged particle in EM fields, these derivative operators correspond to the

canonical momenta pi = mvi+ qAi(r) rather that to the kinematic momenta πi = mvi. The

kinematic momenta π̂x,y,z act in a more complicated way as

π̂iψ(r) = −ih̄
∂ψ

∂ri
− qAi(r)× ψ(r), (26)

or in vector notations

~̂πψ(r) = −ih̄∇ψ(r) − qA(r)ψ(r). (27)

Consequently, the classical Hamiltonian (22) of the charged particle becomes the quantum
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Hamiltonian operator

Ĥ =
1

2m

(

p̂ − qA(r̂)
)2

+ qV (r̂),

Ĥψ(r) =
1

2m

(

−ih̄∇ − qA(r)
)2
ψ(r) + qV (r)ψ(r).

(28)

This Hamiltonian operator governs the time-dependence of the wave function ψ(x, y, z, t)

according to the Schrödinger equation

ih̄
∂

∂t
ψ(r, t) = Ĥψ(r, t) =

1

2m

(

−ih̄∇ − qA(r, t)
)2
ψ(r, t) + qV (r, t)ψ(r, t). (29)

Gauge Transforms.

The electric and the magnetic fields E(r, t) and B(r, t) do not uniquely determine the

vector and the scalar potentials V (r, t) and A(r, t). Instead, the fields determine the poten-

tials up to a gauge transform: Pick any function Λ(x, y, z, t) of space and time and let

A(r, t) → A′(r, t) = A(r, t) + ∇Λ(r, t),

V (r, t) → V ′(r, t) = V (r, t) −
∂

∂t
Λ(r, t).

(30)

Regardless of Λ(r, t), the new potential A′ and V ′ yield exactly the same electric and mag-

netic fields as the old potentials:

E′ = −∇V ′ −
∂A′

∂t

= −∇

(

V −
∂Λ

∂t

)

−
∂

∂t

(

A + ∇Λ
)

= −∇V −
∂A

∂t
+

(

∂

∂t
(∇Λ) − ∇

(

∂Λ

∂t

))

= E + 0, (31)

B′ = ∇×A′ = ∇×
(

A+∇Λ)

= ∇×A + ∇×∇Λ

= B + 0. (32)

In classical mechanics, a gauge transform of the potentials has no effect on the equation of

motion (5) for the charged particle. In quantum mechanics, a gauge transform also does not
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have any effect on any physically measurable quantities. However, to keep the Schrödinger

equation (29) working, a gauge transform (30) of the potentials should be accompanied by

a local phase transform of the wave-function,

ψ(x, y, z, t) → ψ′(x, y, z, t) = ψ(x, y, z, t)× exp
(

i q
h̄
Λ(x, y, z, t)

)

. (33)

To see how this works, let me show that the combined gauge transform (30) and the local

phase transform (33) is a symmetry of the Schrödinger equation for any position-and-time-

dependent Λ(x, y, z, t).

Let’s start with the local phase transform (33) for a position-dependent Λ and consider

what happens to the gradient of the wave function:

∇ψ′ = ∇
(

ψ × exp
(

i q
h̄
Λ
)

)

= (∇ψ)× exp
(

i q
h̄
Λ
)

+ ψ ×∇
(

exp
(

i q
h̄
Λ
))

= (∇ψ)× exp
(

i q
h̄
Λ
)

+ ψ ×
(

exp
(

i q
h̄
Λ
)

× i q
h̄
∇Λ

)

= exp
(

i q
h̄
Λ
)

×
(

∇ψ + i q
h̄
(∇Λ)× ψ

)

.

(34)

Note that the gradient ∇ψ does not transform covariantly, i.e. like ψ itself. Instead, there

is an extra inhomogeneous term (∇Λ)ψ inside the big (· · ·). To remedy this non-covariance,

let’s define the covariant derivative

~Dψ(r) = ∇ψ(r) − i q
h̄
A(r)ψ(r). (35)

This derivative does transform covariantly under the local phase transforms (33), provided

the vector potential A(r) is gauge-transformed for the same Λ(r). Indeed,

[

~Dψ
]

′

= ~D′ψ′ = ∇ψ′ − i q
h̄
A′ψ′ 〈〈 note A′ as well as ψ′ here 〉〉

= exp
(

i q
h̄
Λ
)

×
(

∇ψ + i q
h̄
(∇Λ)× ψ

)

− i q
h̄

(

A + ∇Λ
)

× exp
(

i q
h̄
Λ
)

× ψ

= exp
(

i q
h̄
Λ
)

×
[

∇ψ + i q
h̄
(∇Λ)× ψ − i q

h̄
A× ψ − i q

h̄
(∇Λ)× ψ

]

= exp
(

i q
h̄
Λ
)

×
[

∇ψ − i q
h̄
A× ψ

]

= exp
(

i q
h̄
Λ
)

× ~Dψ.

(36)
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In the same way, for a time-dependent Λ(r, t), we define the covariant time derivative

Dtψ(r, t) =
∂ψ(r, t)

∂t
+ i q

h̄
V (r, t)ψ(r, t), (37)

then after a combined phase and gauge transform

[

Dtψ(r, t)
]

′

= exp
(

i q
h̄
Λ(r, t)

)

×Dtψ(r, t). (38)

As an operator acting on the wave functions, the covariant gradient (35) — or rather

−ih̄ ~D — is the kinematic momentum operator,

~̂π = p̂ − qA(r̂) = −ih̄∇ − qA(r) = −ih̄ ~D. (39)

Consequently, the Hamiltonian operator (28) for the charged particles can be written in

terms of covariant derivatives as

Ĥψ(r) = −
h̄2

2m
~D2ψ(r) + V (r)ψ(r). (40)

Moreover, if we put the V ψ term on the other side of the time-dependent Schrödinger

eqn. (29), we get

ih̄
∂

∂t
ψ(r, t) − V (r, t)ψ(r, t) = −

h̄2

2m
~D2ψ(r, t) (41)

where the left-hand side is the covariant time derivative ih̄Dtψ(r, t). Altogether, we get the

covariant form of the Schrödinger equation

ih̄Dtψ(r, t) = −
h̄2

2m
~D2ψ(r, t) (42)

where both sides transform covariantly under the local phase transforms:

ψ′(x, y, z, t) = exp
(

i q
h̄
Λ(x, y, z, t)

)

× ψ(x, y, z, t),
[

ih̄Dtψ(x, y, z, t)
]

′

= exp
(

i q
h̄
Λ(x, y, z, t)

)

×
[

ih̄Dtψ(x, y, z, t)
]

,
[

−
h̄2

2m
~D2ψ(x, y, z, t)

]

′

= exp
(

i q
h̄
Λ(x, y, z, t)

)

×

[

−
h̄2

2m
~D2ψ(x, y, z, t)

]

.

(43)

Therefore, if the wave function ψ(x, y, z, t) obeys the Schrödinger equation before the com-

bined gauge/phase transform, then after the transform the new ψ′(x, y, z, t) also obeys the
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new Schrödinger equation. And that’s why the local phase transform (33) should be accom-

panied by the gauge transform (30) and vice verse.

This issue of the gauge/phase transforms may seem rather technical, but as I show in

the next set of my notes, it leads to the Aharonov–Bohm effect, helps explain how SQUID

magnetometers work, and even explains how magnetic monopoles might work in quantum

mechanics.

For the moment, let me simply generalize the relation between the gauge and the phase

transforms from ordinary quantum mechanics to quantum electrodynamics (QED) and other

quantum field theories. In QED, instead of wave-functions of individual electrons we have

the quantum electron field Ψ̂(x, y, z, t) which creates and annihilated electrons and positrons.

But despite its operatorial nature, as a function of space and time coordinates — or rather,

as a 4-component array of such functions — it obeys a linear Dirac equation

ih̄DtΨ̂ + ih̄c~α · ~DΨ̂ − mc2βΨ̂ = 0 (44)

where ~D and Dt are the covariant derivatives exactly as in eqs. (35) and (37) for q = −e,

and αx, αy, αz and β are 4 × 4 Dirac matrices, never mind their details. In light of the

covariant derivatives in the Dirac equation, QED is invariant under local phase transforms

of the electron field Ψ̂(r, t) accompanied by the gauge transforms of the EM potential fields

V̂ (r, t) and Â(r, t). This invariance — called the gauge symmetry — is absolutely essential

to QED and helps explain many of it key features, for example the exact masslessness of the

photons.

The gauge symmetry of QED can be generalized to more complicated local symmetries

of other quantum field theories. For example, in QCD — quantum chromodynamics, the

theory of strong interactions — there is a gauge symmetry mixing the 3 colors of the quarks,

accompanied by a rather complicated transform of the EM-like gluon fields. Almost all

features of QCD — and hence of the strong interactions — follow from this gauge symmetry,

but the explanation is waay too complicated for this class.
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