
MAGNETIC FIELDS OF STEADY ELECTRIC CURRENTS,

BIOT–SAVART–LAPLACE LAW, AND ITS APPLICATIONS

In these notes I explain the magnetic fields of steady electric currents. The fields of

time-dependent currents are more complicated, and I’ll discuss them a few lectures later.

Let’s start with the simplest case of an infinite straight wire carrying a current I. The

magnetic field of such a wire is

B =
µ0I

2π

φ̂

s
(1)

where µ0 is the fundamental constant of the MKSA system of units called the vacuum

permeability,

µ0 = 4π · 10−7 Tm/A, (2)

s is the distance from the wire, and φ̂ is a unit vector in the circular direction around the

wire in the plain ⊥to the wire. Specifically, if you are looking down the wire and the current

flows away from you, then the circular direction φ̂ of the magnetic field is clockwise, while

if the current flows toward you, then the magnetic field is counterclockwise. Here are the

pictures of the magnetic field lines for the two cases:

The effect of this magnetic field on another long wire parallel to the first wire is an attractive

force if the currents in the two wires flow in the same direction, and a repulsive force if the
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currents flow in the opposite directions,

I1 I2

F F

I1 I2

F F

I1 I2

F F
(3)

Here is the graphical explanation of the force’s direction for the currents in the same direction:

(4)

The magnitude of the force between two wires per unit of wire’s length is

F

L
=

µ0
2π

× I1I2
d

(5)

where d is the distance between the wires, while the µ0 constant of the MKSA system of

units is exactly

µ0 = 4π · 10−7 Tm/A = 4π · 10−7 N/A2. (6)

In other words, the Ampere — the MKSA unit of electric current — is defined such that two

long parallel wires separated by 1 m distance and each carrying 1 A current are attracted or

repelled with a force of 2 · 10−7 Newtons per meter of length.
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In the Gaussian system of units, there is no µ0. Instead there are factors 1/c (where c is

the speed of light in vacuum) all over the place, For example, the Lorentz Force on a particle

in Gaussian units is

F = q
(

E +
v

c
×B

)

, (7)

the magnetic force on a current-carrying wire is

F =
1

c

∫

wire

I d~ℓ×B, (8)

the magnetic field of an infinite straight wire is

B =
2I

c

φ̂

s
, (9)

and the force between 2 parallel wires is

F

L
=

2

c2
× I1I2

d
. (10)

⋆ ⋆ ⋆

The wires of geometries other than an infinite straight line create magnetic fields much

more complicated that (1). For a steady current in a wire of most general geometry, there

is an integral formula known as the Biot–Savart–Laplace equation or Biot–Savart–Laplace

Law:

B(r) =
µ0
4π

∫

wire

I dr′ × r− r′

|r− r′|3 (11)

in MKSA units, or

B(r) =
1

c

∫

wire

I dr′ × r− r′

|r− r′|3 (12)

in Gaussian units. In these formulae, the r′ spans the wire and the dr′ = d~ℓ is the infinitesimal
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length vector along the wire in the direction of the current. The expression

r− r′

|r− r′|3 =
unit vector from r′ to r

(

distance between r′ and r
)2

(13)

should be familiar to you from the Coulomb Law for the electric field of a charge distribution,

for example the electric field of a charged wire is

E(r) =
1

4πǫ0

∫

wire

r− r′

|r− r′|3 λ dℓ. (14)

But there is a crucial difference between the Biot–Savart–Laplace equation (11) and the

Coulomb equation (14) — the cross product of Id~ℓ with the kernel (13) in the BSL equa-

tion (11). In these notes, I shall explore the consequences of this vector product for several

examples of wire geometries.

Example#1: Infinite Long Wire

For my first example, let me reproduce eq. (1) for the magnetic field of an infinite straight

wire from the Biot–Savart–Laplace Law. Let me use the coordinate system where the wire

runs along the z axis with the current flowing in the +ẑ direction. Consequently, in the BSL

equation

B(r) =
µ0
4π

∫

wire

I dr′ × r− r′

|r− r′|3 (11)

we have r′ = (0, 0, z′) for a variable z′ but fixed x′ = y′ = 0, and I dr′ = +I dz′ ẑ; on the

other hand, the coordinates (x, y, z) of the point r where we measure the magnetic field are

completely general. Therefore,

r − r′ = x x̂ + y ŷ + (z − z′)ẑ, (15)

I dz′ ẑ× (r− r′) = I dz′
(

x ŷ − y x̂ + (z − z′)0
)

, (16)

|r− r′|2 = x2 + y2 + (z − z′)2, (17)

|r− r′|3 =
(

x2 + y2 + (z − z′)2
)3/2

, (18)
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and plugging all these formulae into eq. (11) gives us

B(x, y, z) =
Iµ0
4π

(x ŷ − y x̂)×
+∞
∫

−∞

dz′

(

x2 + y2 + (z − z′)2
)3/2

. (19)

To evaluate the integral here, let’s change the integration variable from z′ to

α = arctan
s

z − z′
=⇒ z′ = z − s

tanα
= z − s× ctanα where s =

√

x2 + y2.

(20)

Consequently,

dz′ = +
s dα

sin2 α
, (21)

x2 + y2 + (z − z′)2 = s2 +
s2

tan2 α
=

s2

sin2 α
, (22)

dz′

(

x2 + y2 + (z − z′)2
)3/2

=
s dα

sin2 α
× sin3 α

s3

=
sinα dα

s2
=

d(− cosα)

x2 + y2
, (23)

while the angle α runs from 0 for z′ → −∞ to π for z′ → +∞. Hence,

+∞
∫

−∞

dz′

(

x2 + y2 + (z − z′)2
)3/2

=

π
∫

0

d(− cosα)

x2 + y2
=

− cos(π) + cos(0)

x2 + y2
=

2

x2 + y2
(24)

and therefore

B(x, y, z) =
µ0I

2π

x ŷ − y x̂

x2 + y2
〈〈 in Cartesian coordinates 〉〉

=
µ0I

2π

φ̂

s
〈〈 in cylindrical coordinates 〉〉.

(25)

Thus, the basic formula (1) for the infinite straight wire indeed follows from the general

Biot–Savart–Laplace equation..
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Example#2: Circular Ring

For the next example, consider a wire shaped into a circular ring of radius R. For

simplicity, let me limit the calculation of the magnetic field to the axis of the ring, otherwise

we would have to deal with elliptic integrals. Let’s use the coordinate system where the ring

lies in the xy plane while its symmetry axis is the z axis, thus

x

y

z

I r′

r

(26)

Along the circular wire,

r′ = R cosφ x̂ + R sinφ ŷ, (27)

dr′ = R(− sinφ x̂ + cosφ ŷ) dφ, (28)

while the points r where we measure the magnetic field are restricted to r = z ẑ, hence

r − r′ = −R cosφ x̂ − R sinφ ŷ + z ẑ, (29)

(− sinφ x̂ + cosφ ŷ)×(− cosφ x̂ − sinφ ŷ) =

= sinφ cosφ
(

x̂× x̂ − ŷ × ŷ = 0
)

+ sin2 φ
(

x̂× ŷ = +ẑ
)

− cos2 φ
(

ŷ × x̂ = −ẑ
)

= (sin2 φ+ cos2 φ)ẑ = ẑ, (30)
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(− sin φ x̂ + cosφ ŷ)× ẑ = − sinφ
(

x̂× ẑ = −ŷ
)

+ cosφ
(

ŷ × ẑ = +x̂
)

= cosφ x̂ + sin φ ŷ, (31)

I dr′ × (r− r′) = IR
(

z cos φ x̂ + z sinφ ŷ + R ẑ

)

dφ, (32)

|r− r′|2 = R2 + z2, (33)

|r− r′|3 =
(

R2 + z2
)3/2

. (34)

Plugging all these formulae into the Biot–Savart–Laplace equation, we obtain

B(0, 0, z) =
µ0
4π

∫

wire

I dr′ × r− r′

|r− r′|3

=
µ0
4π

IR
(

R2 + z2
)3/2

2π
∫

0

dφ
(

z cos φ x̂ + z sinφ ŷ + R ẑ
)

,

(35)

where the integral evaluates to

2π
∫

0

dφ
(

z cosφ x̂ + z sinφ ŷ + Rẑ
)

= z x̂×
2π
∫

0

dφ cosφ + z ŷ×
2π
∫

0

dφ sinφ + R ẑ×
2π
∫

0

dφ

= z x̂× 0 + z ŷ × 0 + R ẑ× 2π

= 2πR ẑ.
(36)

Altogether, the magnetic filed along the ring’s axis is

B(0, 0, z) =
µ0I

2

R2

(R2 + z2)3/2
ẑ . (37)

In particular, at the center of the ring, the magnetic field is

B(center) =
µ0I

2R
ẑ. (38)

Note: on the diagram (26), the current in the wire flows counterclockwise; consequently,

the magnetic field (37) points up, in the +ẑ direction. For a clockwise current, we would
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have an opposite sign of I dr′ and hence opposite direction −ẑ of the magnetic field — down.

This is an example of the right screw rule for the current loops: turn a right screw (almost

all the screws are right) in the direction of the current in the loop, and the screw will move

in the direction of the B field. Equivalently, you may use the right hand rule: curl the fingers

of your right hand around the loop in the direction of the current, and your thumb will point

the direction of the B field.

Segments:

In many cases, a wire is made of several segments. Each segment has a simple geometric

shape — a piece of a straight line, or a circular arc — but the overall geometry can be quite

elaborate. For example, consider a star made of 5 straight-line segments,

(39)

For a wire like this, the Biot–Savart–Laplace integral over the whole wire becomes a sum of

integrals over the individual segments,

B(r) =
µ0 × I

4π
×

segments
∑

i

∫

segment#i

dr′ × (r− r′)

|r− r′|3 . (40)

Let’s work out the integrals here for the straight-line and the circular-arc segments, and than

we shall see a few interesting combinations.
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Example#3: Straight-Line Segment:

Consider a wire segment which follows a straight line from point r′1 to point r′1. Let’s

picture the triangle made by the two ends of this segment and by the point r where we

measure the magnetic field:

~r′1

~r′2
~r

~h α1

α2

O

(41)

Since the wire segment is straight, the infinitesimal vector d~ℓ = dr′ along the segment has a

fixed direction, same as r′2 − r′1. Consequently, the vector product in the numerator of the

BSL integral remains constant along the whole segment. Indeed,

dr′ × (r− r′) = dr′ × (r−RO) − dr′ × (r′ −RO)

〈〈where the second term vanishes since dr′ ‖ (r′ −RO) ‖ (r′2 − r′1) 〉〉

≡ dr′ × (r−RO)

= d~ℓ×~h,

(42)

where d~ℓ = dr′ is the infinitesimal length element along the straight segment, and ~h = r−RO

is the height of the triangle (41). In other words, ~h is the line to the point r where we measure

the magnetic field from the wire segment — or from the extrapolated straight line of the

wire segment — in the direction ⊥ to the segment.

Note: if we measure the magnetic field at a point r which happens to lie right on

the extrapolated straight line of the wire segment, then ~h = 0 and hence d~ℓ × ~h ≡ 0.

Consequently, the whole BSL integral vanishes regardless of the denominator’s details, and

the magnetic field of the segment is zero. Thus, straight segments ‘pointing’ directly towards

or directly away from r do not contribute to the magnetic field at r.
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For ~h 6= 0, the direction of the magnetic field is the direction of the vector product

d~ℓ×~h in the numerator of the BSL integral. This direction is ⊥ to the wire and to the ~h; in

other words, the direction of B(r) is ⊥ to the whole triangle (41). The specific perpendicular

obtains from the right screw rule: If from your point of view, the current flows in the clockwise

direction around r — as it does on figure (41)— then take the perpendicular which points

away from you. OOH, if you see the current flows counterclockwise around r, then take the

perpendicular which points towards you.

Now that we know the direction of the magnetic field, let’s find its magnitude

B =
µ0I

4π
×

ℓ2
∫

ℓ1

dℓ× h

|r′ − r|3 (43)

In this formula, ℓ is the coordinate along the wire; let’s I take it’s origin ℓ = 0 to be the

point O where the height ~h of the triangle touches the wire or the extrapolated line of the

wire. In terms of this ℓ,

|r′ − r|2 = ℓ2 + h2 =⇒ |r′ − r|3 =
(

ℓ2 + h2
)3/2

, (44)

so the BSL integral (43) becomes

B =
µ0I

4π
×

ℓ2
∫

ℓ1

h× dℓ
(

ℓ2 + h2
)3/2

. (45)

To evaluate this integral, we proceed similarly to eqs. (20) through (24): we change the

integration variable ℓ to the angle

α = arc ctan
−ℓ

h
=⇒ ℓ = −h× ctanα, (46)

hence

dℓ
(

ℓ2 + h2
)3/2

=
d(− cosα)

h2
(47)
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and therefore

ℓ2
∫

ℓ1

h× dℓ
(

ℓ2 + h2
)3/2

=

α2
∫

α1

d(− cosα)

h
=

cosα1 − cosα2

h
(48)

where the angles α1 and α2 are exactly as shown on the diagram (41).

Altogether, the magnetic field of a straight wire segment is

B(r) =
µ0 × I

4πh
× (cosα1 − cosα2)× n (49)

where the height h and the angles α1 and α2 are as shown on figure below

~r′1

~r′2
~r

~h α1

α2

O

(41)

and n is the unit vector ⊥ to the whole triangle in the direction given by the right-screw

rule.

Note: in the limit of infinitely long segment in both directions, α1 → 0, α2 → π, hence

cosα1 − cosα2 → 2, and the magnetic field of the segment agrees with the formula for an

infinite wire,

B∞ =
µ0 × I

2πh
. (50)
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Example#4: A Square Loop

Consider a closed loop of wire in the shape of an a× a square:

45◦
135◦ (51)

Let’s calculate the magnetic field at the center of the square (shown in blue).

The square wire consists of 4 similar straight-line segments, so all we need is to evaluate

eq. (49) for the magnetic field due to each segment, and then total up the 4 segments’

contributions. For each segment, h = 1
2
a, α1 = 45◦, α2 = 135◦, hence

B1 segment =
µ0 × I

4π(a/2)
×

(

cos 45◦ − cos 135◦ =
√
2
)

=

√
2

2π
× µ0I

a
. (52)

Also, for each segment the triangle spanning the wire and the center of the square where

we measure B lies in the plane of the square, so the direction of the magnetic field due to

each segment is ⊥ to the whole square. Specifically, the magnetic field points into the page

since in each segment the current flows clockwise around the center. Thus, altogether, the

magnetic field points into the screen and its magnitude is

Bwhole
square = 4× B1 segment =

2
√
2

π
× µ0I

a
. (53)

Example#5: Symmetric N-sided Polygon

In this example the wire also makes a complete loop, this time in the shape of symmetric

N–sided polygon with side a, for example

(54)

Again, we focus on the magnetic field at the center of the polygon, so by symmetry each
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segment of the wire contributes a similar B1 segment. All these contributions are directed ⊥
to the polygon, specifically into the screen, hence

Bpolygon = N × B1 segment × n (55)

where n is the unit vector pointing into the page. Now let’s draw a single segment of the

wire and the triangle connecting it to the center point where the magnetic field is measured:

2π
N

~h

α1
α2

Simple geometry+trigonometry for this triangle gives us

α1,2 =
π

2
∓ π

N
, (56)

cosα1 − cosα2 = 2 sin
π

N
, (57)

h =
a

2
× ctan

π

N
, (58)

and therefore

B1 segment =
µ0I

4π
× cosα1 − cosα2

h
=

µ0I

4π
× 2 tan π

N

a
× 2 sin

π

N
. (59)

Finally, combining all N segments, we find the magnetic field at the center of the polygon is

B = N × B1 segment = N × µ0 × I

4πa
× 2 sin

π

N
× 2 tan

π

N

=
µ0 × I

perimeter = Na
× N2

π
× sin

π

N
× tan

π

N
.

(60)

To check this formula, we first plug in N = 4 for the square and compare with eq. (53)
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from the previous example:

for N = 4,
N2

π
× sin

π

N
× tan

π

N
=

16

π
×

√
2

2
× 1 =

8
√
2

π
, (61)

hence

B[from eq. (60)] =
µ0I

4a
× 8

√
2

π
=

2
√
2

π
× µ0I

a
, (62)

in complete agreement with eq. (53) for the square.

Second, let’s take a large N limit in which the polygon becomes a circular ring of perime-

ter Na = 2πR. In this limit,

lim
N→∞

(

N2

π
× sin

π

N
× tan

π

N

)

= π, (63)

hence the magnetic field at the center of the polygon becomes

B[from eq. (60)] → µ0 × I

2πR
× π =

µ0 × I

2R
, (64)

which indeed agrees with the magnetic field (38) at the center of a circular ring.

Example#6: A Circular Arc

As our final example, let’s calculate the magnetic field at the center of a circular arc. More

generally, consider a wire comprised of a semicircle and two straight segments

C

ϕ
(65)

and calculate the magnetic field at point C at the center of the circular arc.
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Note: besides being at the center of the arc, the point C happens to lie on the straight-line

extrapolations of the straight segments of the wire. Consequently, the two straight segments

do not contribute to the magnetic field B(C) at that point; instead, the entire field at point

C comes from the circular arc segment only.

Let’s parametrize the arc segment by the angle φ from the point C; φ ranges from φ0 to

φ0 + ϕ. In terms of φ,

r′ = R cosφ x̂ + R sinφ ŷ, (66)

r − r′ = −R cosφ x̂ − R sinφ ŷ, (67)

dr′ = R(− sinφ x̂ + cosφ ŷ) dφ, (68)

hence in the numerator of the Biot–Savart–Laplace integral

dr′ × (r− r′) = R2 dφ





sinφ cosφ(x̂× x̂ + ŷ× ŷ = 0) + sin2 φ(x̂× ŷ = +ẑ)

− cos2 φ(ŷ× x̂ = −ẑ)





= R2 dφ
(

sin2 φ+ cos2 φ)ẑ = R2 dφ ẑ.

(69)

Note: the direction of this vector product is always vertically Up, ⊥ to the plane of the ring,

so the magnetic field’s direction is going to be vertically Up.

As to the denominator of the BSL formula, the whole circular arc is at constant distance

|r− r′| ≡ R from the ring’s center, so the denominator is a constant R3. Altogether,

∫

arc

dr′ × (r− r′)

|r− r′|3 =

φ0+ϕ
∫

φ0

R2 ẑ dφ

R3
=

ϕ

R
ẑ , (70)

so the magnetic field at point C is

B(C) =
µ0I

4πR
× ϕ× ẑ . (71)

Note: the ϕ angle in this formula should be taken in radians.
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Magnetic Fields of Thick Conductors

The Biot–Savart–Laplace formula

B(r) =
µ0
4π

∫

wire

I dr′ × r− r′

|r− r′|3 (11)

gives the magnetic field of a steady current flowing through a thin wire which may be

approximated by an infinitely thin line, straight or curved. For such a wire, it does not

matter how the current is distributed across the wire’s cross-section, only the net current I

enter the formula.

But sometimes we have currents flowing through the volume of a conductor which is too

thick to be approximated as a line. For such conductors,

∫

wire

I dr′ −−−−→
becomes

∫∫∫

conductor′s
volume

d3Vol
′

J(r′) (72)

where J(r′) is the current density at the point r′. Consequently, the Biot–Savart–Laplace

equation for such current densities generalizes to

B(r) =
µ0
4π

∫∫∫

d3Vol J(r′)× r− r′

|r− r′|3 . (73)

Likewise, for a steady current flowing along a conducting surface with density K(r′), the

BSL equation becomes

B(r) =
µ0
4π

∫∫

d2A K(r′)× r− r′

|r− r′|3 . (74)

Note: the volume current density J is defined as current per unit of area ⊥to the current,

while the surface current density K is defined as current per unit of length ⊥to the current.

As a vector, K must be tangent to the surface; for example, for the surface spanning the

(x, y) plane, we may have any Kx and Ky components, but the Kz component must vanish.
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Example#7: Infinite Flat Current Sheet

As our final example, consider infinite flat current sheet — i.e., a 2D conducting surface

— carrying a uniform surface current K. Let’s choose our coordinates such that the current

flows in +ŷ direction along the surface spanning the (x, y) plane. Then the magnetic field

at some generic point r = (x, y, z) is given by eq. (74), specifically,

B(x, y, z) =
µ0K

4π

∫∫

plane

dx′ dy′
ŷ × (r− r′)

|r− r′|3 . (75)

In the numerator inside the integral here,

r − r′ = (x− x′)x̂ + (y − y′)ŷ + z ẑ, (76)

ŷ × (r− r′) = (x− x′)(−ẑ) + (y − y′)0 + z(+x̂) = −(x− x′) ẑ + z x̂, (77)

while in the denominator

|r− r′|3 =
(

(x− x′)2 + (y − y′)2 + z2
)3/2

. (78)

To simplify these expressions, let’s change the integration variables x′ and y′ to the polar

coordinates (s, φ) centered at (x, y), thus

x′ = x + s× cos φ, (79)

y′ = y + s× sin φ, (80)

dx′ dy′ = s ds dφ, (81)

ŷ × (r− r′) = −s cosφ ẑ + z x̂, (82)

|r− r′|3 =
(

s2 + z2
)3/2

. (83)

Plugging all these formulae into eq. (75), we arrive at

B(s, y, z) =
µ0K

4π

∞
∫

0

ds s

2π
∫

0

dφ
−s cosφ ẑ + z x̂

(s2 + z2)3/2
. (84)
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Integrating over the polar angle φ, we immediately obtain

2π
∫

0

dφ
(

−s cosφ ẑ+ z x̂
)

= −s ẑ

2π
∫

0

cos φ dφ + z x̂

2π
∫

0

dφ = −sẑ×0 + zx̂×2π = 2πz x̂, (85)

hence

B(x, y, z) =
µ0K

2
× x̂×

∞
∫

0

zs ds

(s2 + z2)3/2
. (86)

Note: the magnetic field everywhere points in either +x̂ or −x̂ direction, depending on the

sign of the remaining integral in this formula.

To evaluate this integral, we change variables from s to t = s2 + z2, thus

zs ds =
z

2
dt, (z2 + s2)3/2 = t3/2, (87)

hence

∞
∫

0

zs ds

(s2 + z2)3/2
=

z

2

∞
∫

z2

dt

t3/2
=

z

2
×
[−2√

t

]+∞

z2
=

z

2
×
[

0 − −2√
z2

]

=
z√
z2

= sign(z), (88)

and therefore

B(x, y, z) =
µ0K

2
× sign(z) x̂ (89)

Note: the magnetic field of the infinite current sheet is completely uniform above the

sheet (z > 0) and likewise completely uniform below the sheet (z < 0), but at the current

sheet itself (z = 0) there is a discintinuous jump. Its magnitude B of the field is the same

µ0K/2 above and below the sheet, but the directions are opposite: above the sheet, the

magnetic field points in the +x̂ direction while above the sheet it points in the −x̂ direction.

Relative to the currents direction +ŷ, the magnetic field above the sheet points 90◦ to the

right of the current, while below the sheet it points 90◦ to the left of the current.
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In a later lecture we shall learn that the discontinuity of the magnetic field across the

current sheet

disc(B) = µ0K× n (90)

follows from the Ampere Law, just like the discontinuity of the electric field across a charged

surface

disc(E) =
σ

ǫ0
n (91)

follows from the Gauss Law. However, the discontinuities of the electric and the magnetic

fields have different directions: while the electric discontinuity disc(E) is ⊥to the whole

charged surface, the magnetic discontinuity disc(B) is tangent to the current sheet but ⊥to

the current’s direction.
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