
Applications of Gauss Law

The Gauss Law of electrostatics relates the net electric field flux through a complete

surface S of some volume V to the net electric charge inside that volume,

ΦE [S]
def
=

∫∫

S

E · dA =
1

ǫ0
×Qnet[inside V ]. (1)

For a highly symmetric configuration of electric charges, the Gauss Law can be used to

obtain the electric field E without taking any hard integrals. Instead, one uses a Gaussian

surface whose symmetry alone assures that E is normal to the surface and has constant

magnitude along the surface. Consequently, the flux through such a surface is simply

ΦE [S] = E × A(S), (2)

hence by Gauss Law (1),

E =
1

ǫ0
×

Q[surrounded by S]

A(S)
. (3)

In these notes, I shall illustrate this method for configurations of electric charges which have

spherical, cylindrical, or planar symmetry.
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Spherical Symmetry

The spherically symmetric charge configurations include a point charge, a uniform spher-

ical shell of charges, a uniformly charged solid ball, several concentric spherical shells, as well

as more exotic configurations where the 3D charge density ρ depends on the radius but not

on the direction of the radius-vector. In spherical coordinates (r, θ, φ),

dQ = ρ(r)× dVolume = ρ(r)× dr × r2dΩ (4)

where dΩ = dθ× sin θdφ is the infinitesimal solid angle (in steradians) and ρ(r, \θ, \φ) depends

only on the radius but not on the angular coordinates θ or φ.

By symmetry, the electric field E of spherically symmetric charges always points in the

radial direction — towards the origin, or away from the origin — while its magnitude depends

only on the radius,

E(r, θ, φ) = E(r only) r̂ . (5)

To find the radial dependence of E(r) we use the Gauss Law. Let S be a sphere of some

radius r centered at the origin. By symmetry, the radial electric field is always perpendicular

to S, while its magnitude E(r) stays constant along S. This makes S a Gaussian surface, so

the flux through S is simply

ΦE [S] = E(r)×A(S) = E(r)× 4πr2. (6)

Hence, by Gauss Law,

E(r)× 4πr2 =
1

ǫ0
×Qnet[insideS] (7)

and therefore

E(r) =
1

4πǫ0 r2
×Qnet

[

inside sphere

of radius r

]

. (8)
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Example: Point Charge.

For an isolated point charge Q, any sphere surrounding the charge contains the same net

charge Q(r) = Q, hence eq. (8) reproduces the Coulomb Law,

E(r) =
Q

4πǫ0 r2
. (9)

Example: Thin Spherical Shell.

Now consider a thin spherical shell of radius R and uniform surface charge density

σ =
dQ

dA
=

Qnet

4πR2
. (10)

For this shell, a Gaussian sphere of radius r < R contains no charge at all, while a Gaussian

sphere of radius r > R contains the whole charge Qnet of the shell, thus

Q(r) =

{

0 for r < R,

Qnet for r > R,
(11)

and therefore

E(r) =







0 for r < R,

Qnet

4πǫ0r2
for r > R,







r

E(r)

(12)

In other words, inside the shell there is no electric field, but outside the shell the electric field

is the same as if the whole charge was at the center.
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Example: Solid Ball.

For our next example we take a solid ball of radius R and uniform 3D charge density

ρ =
dQ

dV
=

Qnet

4π
3
R3

. (13)

Again, a Gaussian sphere of radius r > R contains the entire charge of the ball, hence

for r > R, E(r) =
Qnet

4πǫ0 r2
, (14)

outside the ball, its electric field is the same as if the whole charge was at the center of the

ball. This is an example of a general rule: outside any spherically symmetric charged body,

its electric field is the same as if the whole charge was at the center.

But inside the body, only the charges inside radius r contribute to the E(r). For the

solid ball, the Gaussian sphere of radius r < R contains charge

Q(r) = ρ× V

[

ball of

radius r

]

= ρ×
4π

3
r3 = Qnet ×

r3

R3
. (15)

Consequently, the electric field at radius r < R is

E(r) =
1

4πǫ0 r2
×

Qnet r
3

R3
=

Qnet

4πǫ0R2
×

r

R
. (16)

Thus, inside the ball, the electric field increases linearly with the radial coordinate, while

outside the ball it decreases as 1/r2. Altogether,

r

E(r)

(17)
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Example: Non-Uniform density.

Finally, consider a solid ball of radius R whose charge density depends on the radial

coordinate as

ρ(r) = C × rα (18)

for some constants C and α. The net charge of such a ball is

Qnet =

R
∫

0

ρ(r)× dVolume(r) =

R
∫

0

Crα × 4πr2 dr

= 4πC ×

R
∫

0

rα+2 dr = 4πC ×
Rα+3

α+ 3

=
4π

α+ 3
CRα+3.

(19)

Again, outside the ball the electric field is simply the Coulomb field of the net charge at

the center of the ball,

for r > R, E(r) =
Qnet

4πǫ0 r2
. (20)

But inside the ball, we have a more complicated formula. Indeed, the charge inside a Gaussian

sphere of radius r < R is

Q(r) =

r
∫

0

ρ(r′)× dVolume(r′) =

r
∫

0

Cr′α × 4πr′2 dr′

=
4π

α + 3
Crα+3 = Qnet ×

( r

R

)α+3

,

(21)

hence

E(r) =
Q(r)

4πǫ0 r2
= Qnet ×

( r

R

)α+3

×
1

4πǫ0 r2
=

Qnet

4πǫ0R2
×
( r

R

)α+1

. (22)
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Cylindrical Symmetry

Cylindrically symmetric configurations of electric charges include a long thin rod, a long

hollow cylinder, several coaxial cylindrical shells (like a coaxial cable), as well as more general

systems which are uniform and infinitely long in one dimension and axially symmetric in the

other two dimensions. In cylindrical coordinates (rc, φ, z),

dQ = ρ(rc)× dV = ρ(rc)× drc × rc dφ× dz (23)

where the charge density ρ(rc, \φ, \z) depends only on the cylindrical radius rc but not on the

angle φ or the lengthwise coordinate z.

By symmetry, the electric field of a cylindrically symmetric charge configuration always

points directly away from the cylinder’s axis or directly towards the axis, i.e. it has no z or

φ components but only the rc component. Also, the magnitude of the electric field depends

only on the cylindrical radius rc,

E(rc, φ, z) = E(rc only) r̂c . (24)

The Gaussian surfaces for such an electric field are cylinders C of generic radii r and lengths

L but always coaxial with the charge distribution. For completeness sake, such a surface

comprises both the outside cylinder at fixed rc = r and the circular endcaps at fixed z = z1

or z = z2,

However, on the endcaps the electric field (24) lies parallel to the endcaps instead of crossing

them, so the flux through the endcaps is zero. Instead, the entire flux comes through the
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outer cylinder where E stays normal to the surface and its magnitude stays constant E(r).

Altogether, the net flux through the cylinder C is

ΦE [C] = E(rc = r)×A(C) = E(rc = r)× 2πrL. (25)

By Gauss Law, this implies

2πrL× E(rc = r) =
1

ǫ0
×Qnet

[

inside cylinder of

length = L and radius = r

]

(26)

and therefore

E(rc) =
2

4πǫ0 rL
×Qnet

[

inside cylinder of

length = L and radius = rc

]

(27)

By translational symmetry along the cylinder axis, the charge inside the cylinder is always

proportional to its length L, so let us define the linear charge density inside a given radius

rc,

λ(rc)
def
=

1

L
×Qnet

[

inside cylinder of

length = L and radius = rc

]

(28)

In terms of this linear density,

E(rc) =
λ(rc)

2πǫ0 rc
. (29)

Example: Thin Rod.

Consider an infinitely long, infinitely thin rod of uniform linear charge density λ. Any

Gaussian cylinder containing this rod has net charge Q = λ× L regardless of the cylinder’s

radius. In terms of eq. (28), this means λ(rc) ≡ λ for any rc > 0, hence by the Gauss Law

equation (29)

E(rc) =
λ

2πǫ0 rc
=⇒ E =

λ

2πǫ0 rc
r̂c . (30)

Note: the same formula obtains from the direct integration of the Coulomb fields over the
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length of the rod:

E(rc) =
1

4πǫ0

+∞
∫

−∞

λrc dz
′

(r2c + z′2)3/2

〈〈 changing variables z′ = rc × tanα 〉〉

=
1

4πǫ0

+π/2
∫

−π/2

λ×
cos3 α

r3c
×

rc dα

cos2 α

=
1

4πǫ0
×

λ

rc
×







+π/2
∫

−π/2

cosα dα = 2







=
λ

2πǫ0 rc
.

(31)

But using the Gauss Law is easier than integrating.

Example: Thin Cylindrical Shell.

For our next example, consider an infinitely long thin cylindrical shell of radius R with

a uniform surface charge density

σ ≡
dQ

dA
=

λnet
2πR

. (32)

For this shell, a Gaussian cylinder of radius rc < R contains no electric charge at all, while

a cylinder of radius rc > R contains charge Q = λL. In terms of λ(rc) this means

λ(rc) =

{

0 for r < R,

λnet for r > R,
(33)

and therefore

E(rc) =







0 for rc < R,

λnet
2πǫ0 rc

for rc > R,







rc

E(rc)

(34)
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In other words, inside the shell there is no electric field, but outside the shell the electric field

is the same as if the whole charge was on the axis.

In general, outside any cylindrically symmetric charged body, the electric field is the

same as outside a thin rod of the same net charge density λnet.

Example: Solid Cylinder.

Now consider an infinitely long solid cylinder of radius R and uniform 3D charge density

ρ ≡
dQ

dV
=

λnet
πR2

. (35)

This time, a Gaussian cylinder of radius rc > R contains charge Q = L × λnet, while a

Gaussian cylinder of radius rc < R contains non-zero but smaller charge

Q = ρ× πr2cL = Lλnet×
r2c
R2

(36)

In terms of λ(rc), this means

λ(rc) = λnet ×











r2

R2
for rc < R,

1 for rc > R,

(37)

and therefore

for rc < R, E(rc) = λnet ×
r2c
R2

×
1

2πǫ0 rc
=

λnet
2πǫ0R

×
rc
R

,

for rc > R, E(rc) =
λnet

2πǫ0 rc
,

(38)

inside the cylinder the electric field grows linearly with the radius as rc while outside the

cylinder it decreases as 1/rc,

rc

E(rc)

(39)
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Example: Thick Cylindrical Shell.

This time, consider a thick cylindrical shell of inner radius R1 and outer radius R2,

R1

R2

and uniform 3D charge density ρ, hence net linear charge density

λnet = ρ×
(

πR2
2 − πR2

1

)

. (40)

This time, a Gaussian cylinder of radius smaller than the inner radius of the shell contains

no electric charge at all, and there is no electric field in the hollow inside the cylinder,

for rc < R1, λ(rc) = 0 =⇒ E(rc) = 0, (41)

On the other hand, the Gaussian cylinder of radius larger than the outer radius of the shell

contains the entire linear charge density of the shell, thus

for rc > R2, λ(rc) = λnet =⇒ E(rc) =
λnet

2πǫ0 rc
, (42)

the electric field outside the shell is is similar to the field of a thin rod of the same λnet.

Finally, to find the electric field within the thickness of the shell, we use a Gaussian

cylinder of radius R1 < rc < R2. The linear charge density inside this Gaussian cylinder is

λ(rc) = ρ×
(

πr2c − πR2
1

)

= λnet ×
r2c − R2

1

R2
2 − R2

1

, (43)

hence

E(rc) = λnet ×
r2c − R2

1

R2
2 − R2

1

×
1

2πǫ0 rc
. (44)
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Altogether,

rc

E(rc)

(45)

Planar Symmetry

Charge configurations with planar symmetry include uniform 2D sheets, uniform slabs

of finite thickness, as well as “sandwiches” of such sheets and slabs. In Cartesian coordinates

(x, y, z), a general configuration with planar symmetry has 3D charge density ρ(x, y, z) which

depends only on z but not x or y. By symmetry, the electric field of such a configuration is

parallel to the z axis and its magnitude depends only on the z coordinates but not on x or

y,

E(x, y, z) = Ez(z only) ẑ. (46)

For simplicity, let me assume an additional upside-down symmetry z → −z, thus

ρ(−z) = ρ(+z) =⇒ Ez(−z) = −Ez(+z). (47)

For charge configurations with planar and upside-down symmetries, the simplest Gaus-

sian surfaces to use are brick-like parallelepipeds with top and bottom surfaces at +z and

−z and horizontal area A = ∆x ×∆y. Since the electric field is vertical everywhere, it has

no flux through the four vertical sides of such a Gaussian brick, so the entire flux through

the brick comes from the horizontal top and bottom surfaces. Thus,

ΦE [brick] =

∫∫

top

dx dy Ez(x, y,+z) −

∫∫

bot

dx dy Ez(x, y,−z) (48)

where the − sign between the two integrals comes from opposite directions of the inside-

to-outside normals to the top and bottom surfaces, ntop = (0, 0,+1), nbot = (0, 0,−1).

11



Fortunately, the integrals in eq. (48) are trivial since the electric field does not depend on x

and y, hence

ΦE [brick] = A×
(

Ez(+z) − Ez(−z)
)

. (49)

Finally, in light of the upside-down symmetry (47),

ΦE [brick] = 2A×Ez(+z). (50)

By Gauss Law, this flux is related to the net electric charge of the Gaussian brick,

2AEz(+z) =
1

ǫ0
×Qnet

[

inside brick

A× (−z to + z)

]

(51)

Since the net charge inside such a brick is always proportional to the bricks horizontal area

A, let’s define the net surface density of charge between −z and +z,

σ(z)
def
=

1

A
×Qnet

[

inside brick

A× (−z to + z)

]

=

+z
∫

−z

ρ(z′) dz′. (52)

In terms of this surface density,

Ez(+z) = +
1

2ǫ0
× σ(z), Ez(−z) = −

1

2ǫ0
× σ(z). (53)

Example: Thin Sheet.

As a first example, consider an infinitely thin charged sheet of uniform surface charge

density σnet. For this sheet, any Gaussian brick has net charge Q = σnet × A and therefore

σ(z) ≡ σnet. Consequently, the electric field of this sheet is

Ez(+z) = +
σnet
2ǫ0

, Ez(−z) = −
σnet
2ǫ0

, for any z > 0, (54)

or in other words,

E =
σnet
2ǫ0

sign(z)ẑ. (55)

Again, we could have derived the same formula by integrating the Coulomb field of infinites-

imal point charges all over the infinite 2D sheet. But using the Gauss Law is much easier

than integrating!
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Example: Thick Slab.

For our second example, consider a slab of finite thickness D and uniform 3D charge

density

ρ =
σnet
D

. (56)

For this charge configuration, a Gaussian brick of area A and thickness 2z < D has net

charge Q = ρ× A× 2z, hence

σ(z) = ρ× 2z = σnet ×
2z

D
(57)

and therefore

for 0 < z <
D

2
, Ez(+z) = +

σnet
2ǫ0

×
2z

D
=

σnet
ǫ0

×
+z

D
, Ez(−z) =

σnet
ǫ0

×
−z

D
. (58)

In other words, the electric field inside the slab is

for −
D

2
< z < +

D

2
, E(z) =

ρ

ǫ0
z ẑ =

σnet
ǫ0

z

D/2
ẑ. (59)

On the other hand, the Gaussian brick or thickness 2z > D has net charge Q = σnet × A,

hence σ(z) = σnet and therefore

for z >
D

2
, Ez(+z) = +

σnet
2ǫ0

, Ez(−z) = −
σnet
2ǫ0

. (60)

In other words, the electric field outside the slab is

for |z| >
D

2
, E(z) =

σnet
2ǫ0

sign(z) ẑ, (61)

which is the same as the field of a thin sheet of the same net surface charge density σnet.
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Altogether,

z

Ez
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