
Maxwell–Ampere Law

The original Ampere Law

∇×H = Jfree , (1)
∮

L

H · d~ℓ = Inetfree[through loop L] (2)

applies to the magnetic fields of steady currents, but it does not work for the time-dependent

currents J(t) with ∇·J 6= 0. Indeed, consider an AC current I(t) flowing through a capacitor

S1

S2

loop L

(3)

Of course, the current does not really flow through the capacitor but only through the wires

connected to each of the capacitor’s plates. Inside the capacitor, there is no electric current;

instead, the charges temporarily accumulate on the plates according to

dQ

dt
= I(t). (4)

Now, let’s try to apply the Ampere Law (2) to the loop L on the diagram (3). The current

through L is defined as the net current through any surface spanning the loop, but for a non-

steady current different surfaces may give different answers. For example, the net current

through the surface S1 — which crosses one of the wires connected to the capacitor — is

the AC current I(t) in the wire, while the net current through the surface S2 — which goes
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between the two plates — is zero. So what should we use on the RHS of eq, (2)? The I(t)?

Zero? Something else?

In 1861, James Clerk Maxwell resolved this issue by adding the displacement current

Jd(x, y, z; t) =
∂

∂t
D(x, y, z; t) (5)

to the conduction current Jc in the Ampere Law:

∇×H = Jc + Jd . (6)

The D(x, y, z; t) in eq. (5) is the electric displacement field

D = ǫ0E + P, (7)

so the displacement current (5) involves the time derivatives of both the electric field E and

of the dielectric polarization P,

Jd = ǫ0
∂E

∂t
+

∂P

∂t
, (8)

except in a vacuum where only the first term is present.

The divergences of the conduction current Jc and the displacement current Jd always

cancel each other,

∇ · Jc(x, y, z; t) + ∇ · Jd(x, y, z; t) = 0, (9)

and that’s what makes the Maxwell–Ampere equation (6) mathematically consistent. Like-

wise, in the global form
∮

L

H · d~ℓ =

∫∫

S

(

Jc + Jd) · d2a (10)

for any surface S spanning the Ampere loop L.
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The divergence cancellation (9) stems from the continuity equation for the conduction

current and the free charges,

∇ · Jc(r, t) = − ∂

∂t
ρf (r, t), (11)

and the Gauss Law for the electric displacement field,

∇ ·D(r, t) = ρf (r, t). (12)

which works without any modifications for the time-dependent fields and charges. Taking

the time derivative of both sides of the Gauss Law equation (12), we obtain

∂

∂t
ρf (r, t) =

∂

∂t

(

∇ ·D(r, t)
)

= ∇ · ∂D(r, t)

∂t
= ∇ · Jd(r, t), (13)

hence in light of the continuity equation (11),

∇ · Jc(r, t) = −∇ · Jd(r, t). (14)

Therefore, regardless of how the currents and the charges change with time and place, the

combined conduction + displacement current Jc + Jd always have zero divergence, which

makes the Maxwell–Ampere Law (6) mathematically consistent. And indeed, the Maxwell–

Ampere Law (6) happens to work for any time-dependent fields and currents.

For an example of the displacement current, consider a parallel-plate capacitor (such as

shown on diagram (3)), perhaps with a uniform dielectric between the plates. The displace-

ment field between the plates is uniform (except near the edges of the plates), and its value

follows from the plate charges ±Q via the Gauss Law,

D =
Q

plate area A
ẑ . (15)

Consequently, when the capacitor’s charge Q(t) is time-dependent due to the conduction

current Ic(t) in the wires connected to the capacitor, the displacement field (15) inside the
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capacitor becomes time-dependent, which gives rise to the displacement current

Jd =
dQ

dt

ẑ

A
. (16)

This displacement current density flows only between the plates, so the net displacement

current through the capacitor is

Id = Jd · (A ẑ) =
dQ

dt
, (17)

which is exactly equal to the conduction current Ic(t) in the wires,

If (t) =
dQ

dt
= Id(t). (18)

Physically, this means that the combined conduction + displacement current I(t) = Ic(t) +

Id(t) flows without interruption through the wires and through the capacitor. It is this un-

interrupted net current I(t) which gives rise to the magnetic field surrounding the capacitor

and the wires.

Maxwell Equations

And God said,

∇ ·D = ρfree , (19.a)

∇× E = −∂B

∂t
, (19.b)

∇ ·B = 0, (19.c)

∇×H = Jfree +
∂D

∂t
, (19.d)

and there was light.

The four equations (19,a–d) governing the macroscopic electric and magnetic fields are

usually called the Maxwell equations. Historically, 312 of these equations were known before

James Clerk Maxwell, but he was the first physicist to put them together and discover

that they lead to the electromagnetic waves. Maxwell has also identified the light as an

electromagnetic wave, hence the above biblical quote.
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Actually, Maxwell’s 1865 article A Dynamical Theory of the Electromagnetic Field had

about 20 equations, and his 1873 two-volume book A Treatise on Electricity and Magnetism

had a few more equations. Part of this proliferation was due to not using the vector notations

— it was invented a few years after Maxwell’s death, so he had to write the vector equations

in components. Also, the paper and the book included some extra equations such as the

Ohm’s law J = σE, the linear dielectric equation D = ǫǫ0E, etc., etc. In any case, Maxwell’s

Treatise contained some tremendously important ideas, but it was poorly organised and

very hard to read. It took Oliver Heaviside, Josiah Willard Gibbs, and Heinrich Hertz

to eventually (1884?) make Maxwell’s work accessible to an average physicist. In fact, it

were Hertz and Heaviside who had grouped equations (19,a–d) together, wrote them in the

modern form, and called them the Maxwell’s equations.

In the integral form, the Maxwell equations (19,a–d) become

∫∫

S

D · d2a = Qfree[inside S], (20)

∫∫

S

B · d2a = 0, (21)

∮

L

E · d~ℓ = − d

dt

∫∫

SL

B · d2a, (22)

∮

L

H · d~ℓ =

∫∫

SL

Jcond · d2a +
d

dt

∫∫

SL

D · d2a, (23)

where S is any closed surface, L is any closed loop, and SL is any surface spanning the loop

L. These integral equations give rise to the boundary conditions for the fields at a boundary

between two dielectric and/or magnetic media. In particular, using a brick-shaped Gaussian

surface S in eqs. (20) and (21) — half the brick in one medium, half the brick in the other

— we obtain

D
(1)
⊥ − D

(2)
⊥ = σfree , (24)

B
(1)
⊥ − B

(2)
⊥ = 0 . (25)

We have seen these equations before for the static D and B fields, but now we know they

apply without changes to the time-dependent fields.
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The other boundary conditions follow from eqs. (22) and (23) for a narrow rectangular

Ampere loop ∆x ×∆z, with small ∆x and much smaller ∆z ≪ ∆x. In the ∆z → 0 limit,

eq. (22) becomes

∆x ·
(

E(1) − E(2)
)

= 0 (26)

since the magnetic flux through the loop vanishes with loop’s area as ∆z → 0. Consequently,

for static or dynamical electric fields.

E
(1)
‖

− E
(2)
‖

= 0 (27)

Likewise, in eq. (23) for the same Ampere loop, the D flux through the loop vanishes in

the ∆z → 0 limit, while the net free current through the loop is reduced to the surface

conduction current only, hence

H
(1)
‖ − H

(2)
‖ = Kcond × n (28)

where n is the unit vector ⊥ to the boundary.

The boundary conditions (24), (25), (27), and (28) are the basis of the theory of reflection

and refraction of the electromagnetic waves at boundaries of transparent materials. But that

subject will have to wait until the second semester of the Classical Electrodynamics class

(PHY 352 L).

As written, the Maxwell equations (19,a–d) govern the macroscopic electric and magnetic

fields E,D,B,H in dielectric/magnetic matter. Microscopically, there are only E and B

fields, and the Maxwell equations governing them are

∇ ·E =
1

ǫ0
ρ , (29.a)

∇×E = −∂B

∂t
, (29.b)

∇ ·B = 0, (29.c)

∇×B = µ0J + µ0ǫ0
∂E

∂t
. (29.d)
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Electromagnetic Waves

The most revolutionary aspect of the Maxwell equations (19,a–d) or (19,a–d) is that they

allow for the electromagnetic waves propagating in the absence of any charges or currents. Or

rather, it might take some time-dependent charges or currents to create an electromagnetic

wave in the first place, but one created it keeps propagating further and further away without

any additional charges or currents.

To see how this works, consider the Maxwell equations in a vacuum, in a total absence

of any charges and currents:

∇ · E = 0,

∇ ·B = 0,

∇× E = −∂B

∂t
,

∇×B = µ0ǫ0
∂E

∂t
.

(30)

The last two equations here are coupled first-order differential equations for the electric and

magnetic fields. We can decouple these equations by applying an extra curl:

∇× (∇×E) = ∇×
(

−∂B

∂t

)

= − ∂

∂t

(

∇×B) = − ∂

∂t

(

µ0ǫ0
∂E

∂t

)

= −µ0ǫ0
∂2

∂t2
E, (31)

∇× (∇×B) = ∇×
(

µ0ǫ0
∂E

∂t

)

= µ0ǫ0
∂

∂t

(

∇×E) = µ0ǫ0
∂

∂t

(

−∂B

∂t

)

= −µ0ǫ0
∂2

∂t2
B. (32)

At the same time, a double curl of a vector field is related to its Laplacian according to

∇× (∇×A) = ∇(∇ ·A) − ∇2A. (33)

In particular, for the electric and magnetic fields which have zero divergences (in the vacuum),

we have

∇× (∇× E) = −∇2E, ∇× (∇×B) = −∇2B. (34)
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Consequently, the decoupled second-order equations (31) and (32) become

∇2E(x, y, z, t) = +µ0ǫ0
∂2

∂t2
E(x, y, z, t),

∇2B(x, y, z, t) = +µ0ǫ0
∂2

∂t2
B(x, y, z, t).

(35)

Physically, this means that each component Ex, Ey, Ez, Bx, By, Bz of the electric or magnetic

field in the vacuum obeys the wave equation

(

1

v2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)

Field(x, y, z, t) = 0, (36)

with wave speed

1

v2
= µ0ǫ0 =⇒ v =

1
√
ǫ0µ0

= c = 299 792 458 m/s. (37)

Back in Maxwell’s time, the measurements of speed of light in the vacuum were a few

percent off, about 3.12 ·108 m/s. The Coulomb constant 1/(4πǫ0) was also a few percent off,

so plugging it into eq. (37), Maxwell got v ≈ 3.12 · 108 m/s. The sheer coincidence between

the experimental speed of light in the vacuum and the theoretical speed of the EM waves

(also in the vacuum) immediately suggested to Maxwell that light is an electromagnetic

wave. Later, with better measurements, both speeds were corrected by a few percent, but

the Maxwell’s conclusion stands: the light is an electromagnetic wave.

Let me conclude these notes with the speed of light in a linear dielectric/magnetic

medium. In the absence of free charges or currents, the macroscopic Maxwell equations

(19,a–d) become

∇ · E =
1

ǫǫ0
∇ ·D = 0,

∇ ·B = 0,

∇× E = −∂B

∂t
,

∇×B = µµ0
∂D

∂t
= µµ0ǫǫ0

∂E

∂t
.

(38)
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Consequently,

∇2E = ∇(∇ · E) − ∇× (∇× E) = −∇× (∇× E)

= −∇×
(

−∂B

∂t

)

= +
∂

∂t

(

∇×B
)

= +
∂

∂t

(

µµ0ǫǫ0
∂E

∂t

)

= +µµ0ǫǫ0
∂2

∂t2
E,

(39)

and likewise

∇2B = ∇(∇ ·B) − ∇× (∇×B) = −∇× (∇×B)

= −∇×
(

µµ0ǫǫ0
∂E

∂t

)

= −µµ0ǫǫ0
∂

∂t

(

∇× E
)

= −µµ0ǫǫ0
∂

∂t

(

−∂B

∂t

)

= +µµ0ǫǫ0
∂2

∂t2
B.

(40)

Thus, each component of the electric or magnetic field obeys the wave equation

(

1

v2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)

Field(x, y, z, t) = 0, (41)

for wave speed

1

v2
= µµ0ǫǫ0 =⇒ v =

1
√
µǫ
√
µ0ǫ0

=
c

√
µǫ

. (42)
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