
BOUNDARY PROBLEMS FOR DIELECTRICS

In the bulk of a uniform dielectric, the bound charges shadow the free charges,

ρb = −
ǫ− 1

ǫ
× ρf =⇒ ρnet = +

1

ǫ
× ρf . (1)

Alas, the bound surface charges on the outer boundary of a dielectric are more complicated.

Therefore, dielectrics and their boundaries distort the electric fields of free charges even when

they are placed completely outside the dielectric. In these notes, I give two examples of such

dielectric boundary problems.

But first, a few general rules:

1. In vacuum or inside any uniform dielectric, the electric potential V (x, y, z) obeys the

Poisson equation

∇2V (x, y, z) = −
ρnet
ǫ0

= −
ρf (x, y, z)

ǫ(x, y, z)ǫ0
(2)

where ǫ(x, y, z) depends only on whether (x, y, z) is inside or outside the dielectric.

2. The potential V (x, y, z) is continuous across the dielectric boundaries. This assures

continuity of the tangential components E‖ of the electric tension field.

3. The normal component of the tension field is not continuous, but D⊥ — and hence

ǫ×E⊥ = D⊥/ǫ0 — should be continuous.

• Thus, as one approaches the dielectric’s surface from the inside or from the outside the

dielectric.

limV outside = limV inside but limEoutside
⊥ = ǫ× limEinside

⊥ (3)

Or for a boundary between two kinds of dielectric with different dielectric constants,

limV (1) = limV (2) but ǫ1 × limE
(1)
⊥ = ǫ2 × limE

(2)
⊥ . (4)
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Example#1: A Dielectric Ball in External Electric Field

Consider a solid ball made of a uniform dielectric in an external electric field E0. That

is, far away from the ball

for r → ∞, V ≈ −E0 × z = −E0 × r cos θ, (5)

but closer to the ball the field is distorted by the bound charges on the ball’s surface.

To solve this problem, I’ll start by writing down the general formulae for the potential

V (r, θ, φ) inside and outside the ball using the separation of coordinates method, and then

I shall apply the boundary conditions (3) at the surface of the ball. Since there are no

free charges anywhere inside or outside the ball, the potential obeys the Laplace equation

∇2V (r, θ, φ) = 0. Also, by the axial symmetry of the problem, we may take V to be φ–

independent. Hence separating the dependence of V on the remaining r and θ coordinates,

we have

for r < R, V inside(r, θ) =
∞
∑

ℓ=0

(

Aℓ × rℓ +
Bℓ

rℓ+1

)

× Pℓ(cos θ),

for r > R, V outside(r, θ) =
∞
∑

ℓ=0

(

Cℓ × rℓ +
Dℓ

rℓ+1

)

× Pℓ(cos θ),

(6)

for some constant coefficients Aℓ, Bℓ, Cℓ, Dℓ. In particular, the Bℓ coefficients govern the

asymptotic behavior of the potential at r → 0 — the center of the dielectric ball. In the

example at hand, there are no charges or multipoles at the center, so the potential should

be completely regular for r → 0, which means

all Bℓ = 0. (7)

Likewise, the Cℓ coefficients govern the asymptotic behavior of the potential far away from

the ball:

for r → ∞, V outside(r, θ) ≈

∞
∑

ℓ=

Cℓ × rℓ × Pℓ(cos θ); (8)
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Comparing this asymptotics to eq. (5), we immediately see that in our example

C1 = −E0, all other Cℓ = 0. (9)

The remaining coefficients Aℓ and Dℓ follow from the boundary conditions (3) at the

surface of the dielectric ball. In particular

V inside(R, θ) = V outside(R, θ) for all θ (10)

calls for

Aℓ × Rℓ +
Bℓ

Rℓ+1
= Cℓ ×Rℓ +

Dℓ

Rℓ+1
. (11)

Also, the electric field ⊥ to the surface is the radial component

Er = −
∂V

∂r
=

∞
∑

ℓ=0

Pℓ(cos θ)×



















(

−ℓAℓ × rℓ−1 +
(ℓ+ 1)Bℓ

rℓ+2

)

inside the ball,

(

−ℓCℓ × rℓ−1 +
(ℓ+ 1)Dℓ

rℓ+2

)

outside the ball.

(12)

Hence, requiring that

Eoutside
r (R, θ) = ǫ× Einside

r (R, θ) for all θ (13)

calls for

−ǫℓAℓ ×Rℓ−1 +
ǫ(ℓ+ 1)Bℓ

Rℓ+2
= −ℓCℓ × Rℓ−1 +

(ℓ+ 1)Dℓ

Rℓ+2
. (14)

It remains to solve the equations (11) and (14) for the Aℓ and Dℓ coefficients on terms

of the Bℓ and Cℓ. For all the ℓ 6= 1 modes, the solution is trivial:

Bℓ = Cℓ = 0 =⇒ Aℓ = Dℓ = 0. (15)

For the remaining ℓ = 1 mode, we have B1 = 0, C1 = −E0, hence

A1 × R = −E0 × R +
D1

R2
and − ǫA1 = +E0 +

2D1

R3
, (16)
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and therefore

ǫA1 + 2A1 =

(

−E0 −
2D1

R3

)

+ 2

(

−E0 +
D1

R3

)

= −3E0

=⇒ A1 = −
3

ǫ+ 2
× E0,

ǫD1 + 2D1 = ǫ
(

A1 × R3 + E0 × R3
)

+
(

− ǫA1 ×R3 − E0 ×R3
)

= (ǫ− 1)× E0 ×R3

=⇒ D1 =
ǫ− 1

ǫ+ 2
× E0R

3.

(17)

Altogether, outside the ball

V (r, θ) = E0

(

−r +
ǫ− 1

ǫ+ 2
×

R3

r2

)

× cos θ, (18)

or in terms of the electric field

Eoutside = E0 + E[pure dipole p] (19)

where p — the net dipole moment induced in the dielectric ball — is

p = 4πǫ0
ǫ− 1

ǫ+ 2
R3E0 . (20)

As to the inside of the ball,

V inside = −
3

ǫ+ 2
× E0 × r cos θ, (21)

which means uniform electric field

Einside = +
3

ǫ+ 2
E0 . (22)
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Example#2: A Point Charge Outside a Dielectric Half–Space

Consider a large and thick slab of a uniform dielectric. Let’s put a point charge Q above

the upper surface of the slab, but so close to it that the bottom surface of the slab — as

well as the left, right, forward, and backward surfaces — are comparatively so much further

away from the charge that we may approximate them as being infinitely far away. In this

approximation, the dielectric fill up the whole bottom half (z < 0) of the 3D space, while

upper half-space remains empty except for the point charge Q at x = y = 0, z = +a.

Pictorially,

dielectric

vacuum

xy plane

z

Q

(23)

Our task is to find the potential and hence the electric field both inside and outside the

dielectric.

Before we address this problem, let’s for the moment replace the dielectric at z < 0 with

a conductor. For that situation, the simpest solution is in terms of the mirror image charge

QI = −Q at x = y = 0, z = −a. Specifically,

for z > 0, E(x, y, z) = E[Q](x, y, z) + E[QI ](x, y, z)

but for z < 0, E(x, y, z) = 0.

Of course, in reality there is no image charge inside a conductor. Instead, there is a surface
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charge at z = 0 — the top of the conductor —

σc(x, y) = −
Q

2π
×

a
(

x2 + y2 + a2
)3/2

(24)

whose electric field looks like the field of the image charge above the surface while below the

surface it cancels the field of Q,

E[σc](x, y, z) =

{

E[QI ](x, y, x) for z > 0,

−E[Q](x, y, z) for z < 0.
(25)

Now let’s go back to the dielectric case. Similar to the conductor, there would not be

any charges inside the dielectric but only on the surface. Indeed, in a uniform dielectric the

bound volume charges shadow the free charges, ρb = − ǫ−1
ǫ ρf , and since in our case there

are no free charges inside the dielectric, there also would not be any bound charges below

the surface. However, on the surface we would generally have some bound charges, hence

at z = 0, σ(x, y) = σb(x, y) = Pz(x, y, 0). (26)

Altogether, we have these charges on the z = 0 plane, and the point charge Q above the

plane, and this is it — there are no other charges anywhere else.

The hard question is to find the surface charge density σb(x, y), and I claim that the

solution is similar to the charges (24) on a conducting plane but with a smaller coefficient

ν < 1,

σb(x, y) = ν × σc(x, y) = −ν ×
Q

2π
×

a
(

x2 + y2 + a2
)3/2

. (27)

In a couple of pages we shall see that

ν =
ǫ− 1

ǫ+ 1
, (28)

but for the moment let’s allow a general 0 < ν < 1 and calculate the net electric field due to

the bound charges (27) as well as the point charge Q. In light of eq. (25), the field generated
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by just the bound charges (27) is

E[σb](x, y, z) =

{

+νE[QI ](x, y, x) for z > 0,

−νE[Q](x, y, z) for z < 0.
(29)

hence the net electric field in the system is

For z < 0 (inside the dielectric),

Enet(x, y, z) = E[Q](x, y, z) − νE[Q](x, y, z)

= (1− ν)× E[Q](x, y, z), (30)

For z > 0 (above the dielectric),

Enet(x, y, z) = E[Q](x, y, z) + νE[QI ](x, y, z)

= E[Q](x, y, z) + E[Q′
I ](x, y, z) (31)

where Q′
I is the reduced image charge

Q′
I = ν ×QI = −ν ×Q located at x = y = 0, z = −a. (32)

Here is the picture showing both the original charge Q (solid red circle) and the reduced

image charge Q′
I (open blue circle):

dielectric

vacuum

xy plane

z

Q

Q′
I

(33)

Now let’s prove that eqs. (30) and (31) indeed solve the problem. First, both above and
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below the z = 0 surface the net electric field obeys the electrostatic equations ∇ × E = 0

(this should be obvious) and ǫ0∇ · E = ρ. Indeed,

for z > 0, ∇ ·Enet(x, y, z) = Q× δ(x)δ(y)δ(z − a) + Q′
I × δ(x)δ(y)δ(z + a)

= Q× δ(x)δ(y)δ(z − a) + 0,

for z < 0, ∇ ·Enet(x, y, z) = (1− ν)×Q× δ(x)δ(y)δ(z − a) = 0.

(34)

Second, we must check the boundary conditions (3) for z = 0. Here we may save a lot of

calculations by using the reflection symmetry z → −z, hence for the original mirror charge

QI = −Q,

at z = 0, Ex,y[QI ] = −Ex,y[Q] while Ez[QI ] = +E[Q]. (35)

For the reduced mirror charge Q′
I , these relations become

Ex,y[Q
′
I ](x, y, 0) = −ν ×Ex,y[Q](x, y, 0)

while Ez[Q
′
I ](x, y, 0) = +ν × Ez[Q](x, y, 0),

(36)

hence the net electric field just above the boundary is

net
Eabove
x,y (x, y, 0) = (1− ν)× Ex,y[Q](x, y, 0),

net
Eabove
z (x, y, 0) = (1 + ν)×Ez[Q](x, y, 0).

(37)

At the same time, the net electric field just below the boundary is simply

net
Ebelow
x,y,z (x, y, 0) = (1− ν)× Ex,y,z[Q](x, y, 0) (38)

for all 3 components. Comparing these fields to each other, we see that

net
Eabove
x,y (x, y, 0) =

net
Ebelow
x,y (x, y, 0), (39)

but
net

Eabove
z (x, y, 0) =

1 + ν

1− ν
×

net
Ebelow
z (x, y, 0). (40)
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By inspection, eq. (39) is precisely the boundary condition for the tangential electric field,

while eq. (40) looks like the boundary condition for the normal electric fields (3), provided

1 + ν

1− ν
= ǫ. (41)

The last condition sets the value of the ν coefficient we should use for our solution, namely

ν =
ǫ− 1

ǫ+ 1
. (42)

Quod erat demonstrandum.
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