
Separation of Variables in Polar and Spherical Coordinates

Polar Coordinates

Consider an infinitely long cylindrical cavity of radius R. There may be some charges

outside the cavity and/or on its surface, but there are no charges inside the cavity, so the

potential obeys △V (s, φ, z) = 0 for s < R. Suppose we are given the potential Vb(φ, z) on the

cavity’s surface, and we need to find the potential everywhere inside the cavity. For simplicity,

suppose the boundary potential depends only on the angular coordinate φ and not on the z

coordinate along the cylinder, Vb(φ, z) = Vb(φ only), so the potential inside the cylinder should

also be independent on z, V (s, φ, z) = V (s, φ only).

Mathematically, we have a two-dimensional problem: Find V (s, φ) such that:

[1] ∇2V (s, φ) ≡ 0 for s ≤ R.

[2] V is periodic in φ, V (s, φ+ 2π) = V (s, φ).

[3] V is well-behaved at s = 0 (the axis).

[4] At s = R (the surface), V (s, φ) = given Vb(φ).

In the separation-of-variables method, we start by looking at solutions to conditions [1,2,3]

(but not [4]) in the form

V (s, φ) = f(s)× g(φ). (1)

Let’s start with the 2D Laplacian, which in polar coordinates (s, φ) acts as

△V (s.φ) =
∂2V

∂s2
+

1

s
×

∂V

∂s
+

1

s2
×

∂2V

∂φ2
. (2)

For the potential V (s, φ) of the form (1), this Laplacian becomes

△V = f ′′(s)× g(φ) +
f ′(s)

s
× g(φ) +

f(s)

s2
× g′′(φ), (3)

hence

s2

V
×△V =

s2f ′′(s)

f(s)
+

sf ′(s)

f(s)
+

g′′(φ)

g(φ)
. (4)

Note that the first two terms here depend only on s while the third term depends only on φ.

OOH, △V and hence the whole combination must vanish for all s and all φ, which is possible
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only if

s2f ′′(s)

f(s)
+

sf ′(s)

f(s)
= constant C and

g′′(φ)

g(φ)
= −C. (5)

Next, consider the g equation g′′(φ)+Cg(φ) = 0 for a constant C. In general, the solutions

to this equation are

for C = +m2 ≥ 0, g(φ) = A cos(mφ) + B sin(mφ), (6)

for C = −µ2 ≤ 0, g(φ) = A cosh(µφ) + B sinh(µφ). (7)

However, we want not just any solution but a periodic solution g(φ+2π) = g(φ), which requires

trigonometric rather than hyperbolic sine and cosine, hence C = +m2 > 0. Moreover, a period

compatible with 2π requires integer m = 0, 1, 2, 3, 4, . . .. Thus,

C = +m2 for m = 0, 1, 2, 3, . . . and g(φ) = A cos(mφ) + B sin(mφ). (8)

Now consider the f equation for C = +m2,

s2 × f ′′(s) + s× f ′(s) − m2 × f(s) = 0. (9)

This equation is linear in f and homogeneous in s, so let’s look for solutions of the form

f(s) = sα for some power α. Indeed, plugging such f into the equation yields

0 = s2 × α(α− 1)sα−2 + s× αsα−1 − m2 × sα = sα ×
(

α2 − m2
)

, (10)

which is satisfied whenever

α2 − m2 = 0 =⇒ α = ±m. (11)

For m 6= 0 there are two distinct roots, hence two independent solutions to eq. (9), so the

general solution looks like

f(s) = D × s+m + E × s−m (12)

for some constants D and E. For m = 0 the roots (11) coincide so we only get one solution,
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while the other solution involves the logarithm ln(s), thus in general

f(s) = D + E × ln(s). (13)

In any case, we want more than a general solution to the equation (9), we want the solution

which obeys condition [3], namely no singularity at the cylinder’s axis s = 0. This condition

rules out negative powers of s for m 6= 0 or the logarithm for m = 0, which leaves us with

f(s) = const× s+m = const′ ×
( s

R

)m
. (14)

Altogether, we have an infinite series of solutions to conditions [1,2,3], namely

V0(s, φ) = A0 = const for m = 0, and

Vm(s, φ) = A cos(mφ)× (s/R)m + B sin(mφ)× (s/R)m for integer m = 1, 2, 3, . . . .
(15)

Consequently, a general solution to [1,2,3] is

V (s, φ) = A0 +
∞
∑

m=1

(

Am cos(mφ) + Bm sin(mφ)
)

×
( s

R

)m
(16)

for some constant coefficients Am and Bm. Or in terms of complex exponentials e±imφ with

complex coefficients,

V (s, φ) = A0 +
∞
∑

m=1

(

1
2(Am + iBm)e+imφ + 1

2(Am − iBm)e−imφ
)

×
( s

R

)m

=

+∞
∑

m=−∞

Cm × eimφ ×
( s

R

)|m|
, (17)

where C0 = A0, C+m = 1
2(Am + iBm), C−m = 1

2(Am − iBm) = C∗
+m. (18)

Finally, the coefficients Cm follows from the boundary condition [4] on the surface of the

cylinder:

@s = R, V (R, φ) =

+∞
∑

m=−∞

Cm × eimφ = given Vb(φ), (19)

so the Cm obtain from expanding the periodic Vb(φ) into the Fourier series. Hence, the reverse
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Fourier transform gives

Cm =
1

2π

2π
∫

0

Vb(φ)× e−imφ dφ. (20)

Or if you prefer the expansion (16) into real sine and cosine waves,

Bm =
2

2π

2π
∫

0

Vb(φ) sin(mφ) dφ,

Am =
2

2π

2π
∫

0

Vb(φ) cos(mφ) dφ,

except A0 =
1

2π

2π
∫

0

Vb(φ) dφ.

(21)

As a specific example, suppose the cylinder’s surface is split in two halves with potentials

±V0, for example

Vb(φ) =

{

+V0 for 0 < φ < π,

−V0 for π < φ < 2π.
(22)

By antisymmetry Vb(2π − φ) = −Vb(φ), the Fourier transform of this potential has no cosine

waves but only sine waves, thus all Am = 0 while

Bm =
V0
π

π
∫

0

sin(mφ) dφ −
V0
π

2π
∫

π

sin(mφ) dφ

=
V0
mπ

[

cos(0) − 2 cos(mπ) + cos(2mπ)] =
V0
mπ

×

{

4 for odd m,

0 for even m.

(23)

Consequently, the potential inside the cylinder is given by the series

V (s, φ) =
4V0
2π

oddm
∑

m=1,3,5,...

sin(mφ)

m
×
( s

R

)m
, (24)

which can be analytically summer up to

V (r, s) =
4V0
2π

× arctan

(

2Rs

R2 − s2
× sin φ

)

. (25)

To illustrate this potential graphically, let me plot it as a function of φ for s = 0.1R, 0.3R,
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s = 0.5R, s = 0.7R, s = 0.9R, and s = R:

φ

V

(26)

Note: the closer we are to the axis, the smaller is the amplitude of the V (φ) curve, and the curve

looks more and more like the sine wave. Mathematically, this happens because the larger–m

terms in the series (24) carry larger powers of (s/R), so for small s/R ratios they become small

compared to the leading m = 1 term. Consequently, close to the axis where (s/R) ≪ 1 we may

approximate the whole series by its leading term (s/R) sin(φ).

Outside the Cylinder

Now consider a slightly different problem: instead of a cylindrical cavity, we have a charged

cylinder surrounded by empty space. We don’t know the charges inside the cylinder or on

its surface, all we know is the boundary potential Vb(φ) which happens to be independent of

z coordinate, and we need to find out the potential V (s, φ) outside the cylinder (which we

presume to be also z independent).

Proceeding similarly to the previous example, we start by looking for V (s, φ) = f(s)× g(φ)

which obeys the Laplace equation and is periodic in φ. This leads us to

C = +m2 for m = 0, 1, 2, 3, . . . and g(φ) = A cos(mφ) + B sin(mφ). (8)

and hence

f(s) =







D + E × ln(s) for m = 0,

D × s+|m| + E × s−|m| for m 6= 0.
(27)
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However, this time we are concerned with the asymptotic behavior for s → ∞ rather than

the axis of the cylinder at s = 0. Specifically, we want the potential to go to zero — or at

least to stay finite — for s → ∞, and this rules out the positive powers of s as well as ln(s).

Consequently, outside of the cylinder

f(s) = const× s−|m| (28)

instead of f(s) ∝ s+|m| inside the cylinder.

Combining the s and φ dependence, we find

V (s, φ) = A0 +

∞
∑

m=1

(

Am cos(mφ) + Bm sin(mφ)
)

×

(

R

s

)m

(29)

for some constants Am and Bm, or in terms of complex exponentials e±imφ,

V (s, φ) =

+∞
∑

m=−∞

Cm × eimφ ×

(

R

s

)|m|

. (30)

Finally, the complex coefficients Cm = C∗
−m here — or if you prefer, the real coefficients Am

and Bm, — obtain from expanding the boundary potential into the Fourier series, precisely as

in eqs. (20) or (21).

Spherical Coordinates

Now consider a 3D problem: Find the potential V (r, θ, φ) inside a spherical cavity — or

outside a sphere — when we are given the potential Vb(θ, φ) on the spherical surface. For

simplicity, let’s focus on potentials with axial symmetry:

Vb(θ, φ) = Vb(θ only) =⇒ V (r, θ, φ) = V (r, θ only). (31)

Mathematically, we seek the potential which:

[1] Obeys the 3D Laplace equation.

[2] Is single-valued, non-singular, and smooth as a function of θ.

[3] Is well behaved at the center r → 0 if we work inside the sphere, or asymptotes to zero for

r → ∞ if we work outside the sphere.

[4] Has given boundary values at the sphere’s surface, V (r = R, θ) = Vb(θ).
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Using the separation of variables method, we first seek to satisfy the conditions [1,2,3] for a

potential of the form

V (r, θ) = f(r)× g(θ), (32)

find an infinite series of solutions, then look for a linear combination which satisfies the condi-

tion [4].

Let’s start with the Laplace equation in the spherical coordinates:

△V (r, θ, φ) =
∂2V

∂r2
+

2

r
×

∂V

∂r

+
1

r2
×

∂2V

∂θ2
+

1

r2 tan θ
×

∂V

∂θ

+
1

r2 sin2 θ
×

∂2V

∂φ2
.

(33)

For the potential of the form (32), the Laplacian becomes

△V =

(

f ′′(r) +
2f ′(r)

r

)

× g(θ) +
f(r)

r2
×

(

g′′(θ) +
g′(θ)

tan θ

)

, (34)

hence

r2

V
×△V =

(

r2f ′′(r)

f(r)
+

2rf(r)′

f(r)

)

+

(

g′′(θ)

g(θ)
+

g′(θ)

g(θ) tan θ

)

, (35)

where the two terms inside the first () depend only on radius r while the two terms inside the

second () depend only on the latitude θ. Consequently, the Laplace equation △V ≡ 0 for all

r, θ requires

r2 ×
f ′′(r)

f(r)
+ 2r ×

f ′(r)

f(r)
= +C, (36)

g′′(θ)

g(θ)
+

1

tan θ
×

g′(θ)

g(θ)
= −C, (37)

for the same constant C. (38)
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Next, consider the g equation (37), or equivalently

g′′(θ) +
g′(θ)

tan θ
+ C × g(θ) = 0. (39)

Let’s change the independent variable here from θ to x = cos θ, thus

g(θ) = P (cos θ) (40)

for some function P (x). Consequently, by the chain rule for derivatives,

dg

dθ
= − sin θ ×

dP

dx

∣

∣

∣

∣

x=cos θ

(41)

and hence

d2g

dθ2
= − cos θ ×

dP

dx

∣

∣

∣

∣

x=cos θ

+ sin2 θ ×
d2P

dx2

∣

∣

∣

∣

x=cos θ

, (42)

so plugging these derivatives into eq. (39) we arrive at

0 = − cos θ ×
dP

dx
+ sin2 θ ×

d2P

dx2
+

− sin θ

tan θ
×

dP

dx
+ C × P

= (1− cos2 θ)×
d2P

dx2
− (cos θ + cos θ)×

dP

dx
+ C × P.

(43)

In terms of x = cos θ, this is the Legendre equation for the P (x),

(1− x2)× P ′′(x) − 2x× P ′(x) + C × P (x) = 0. (44)

Without explaining how to solve this equation, let me briefly summarize its solutions.

For generic C, all non-zero solutions to this equation have logarithmic singularities at x = +1

(which corresponds to θ = 0) and/or at x = −1 (which corresponds to θ = π). The non-singular
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solutions obtain only for

C = ℓ(ℓ+ 1), integer ℓ = 0, 1, 2, 3, . . . , (45)

in which case the good solution is the Legendre polynomial of degree ℓ,

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ
(x2 − 1)ℓ. (46)

The overall coefficient here is chosen such that at x = +1 all these polynomials become Pℓ(1) =

1, while for x = −1 Pℓ(−1) = (−1)ℓ. Here are a few explicit Legendre polynomials for small ℓ:

P0(x) = 1,

P1(x) = x,

P2(x) = 3
2x

2 − 1
2 ,

P3(x) = 5
2x

3 − 3
2x,

P4(x) = 35
8 x

4 − 15
4 x

2 + 3
8 ,

P5(x) = 63
8 x

5 − 35
4 x

3 + 15
8 x,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(47)

The Legendre polynomial are ‘orthogonal’ to each other when we use
∫ +1
−1 dx as the measure,

+1
∫

−1

Pℓ(x)× Pℓ′(x) =







0 for any ℓ′ 6= ℓ,

2

2ℓ+ 1
for ℓ′ = ℓ.

(48)

Consequently, any analytic function of x ranging from −1 to +1 may be expanded in a series

of Legendre polynomials,

any H(x) =

∞
∑

ℓ=0

Hℓ × Pℓ(x) for Hℓ =
2ℓ+ 1

2

+1
∫

−1

H(x)× Pℓ(x) dx. (49)

Anyhow, for C = ℓ(ℓ+ 1) and g(θ) = Pℓ(cos θ), the f equation (36) becomes

r2 × f ′′(r) + 2r × f ′(r) − ℓ(ℓ+ 1)× f(r) = 0. (50)

This equation is linear in f and homogeneous in r, so let’s look for the solutions of the form
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f(r) = rα for some constant power α. Indeed plugging such an f into the equation (50) yields

0 = r2 × α(α− 1)rα−2 + 2r × αrα−1 − ℓ(ℓ+ 1)× rα

= rα ×
(

α(α− 1) + 2α− ℓ(ℓ+ 1)
)

(51)

so the differential equation is satisfied whenever

α(α− 1) + 2α = α(α+ 1) = ℓ(ℓ+ 1) =⇒ α = ℓ or α = −ℓ − 1. (52)

Thus, he general solution to eq. (36) has form

f(r) = A× rℓ +
B

rℓ+1
. (53)

The specific solution we need depends on whether we are looking for the potential inside

the sphere or outside the sphere.

• For the inside-the-sphere solution we want the potential to be non-singular at the center,

which rules out negative powers of the radius r. In terms of eq. (53) this means B = 0

and hence

f(r) = const× rℓ = const′ ×
( r

R

)ℓ
. (54)

• For the outside-the-sphere solution, we want the potential to asymptote to zero for r → ∞,

which rules out positive powers of the radius. In terms of eq. (53) this means A = 0 and

hence

f(r) =
const

rℓ+1
= const′ ×

(

R

r

)ℓ+1

. (55)

Altogether, the general solution to the conditions [1,2,3] is given by the series:

Inside the sphere,

V (r, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×
( r

R

)ℓ
. (56)

Outside the sphere,

V (r, θ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×

(

R

r

)ℓ+1

. (57)

In both cases the coefficients Cℓ are constants, whose values are determined by the remaining
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condition [4], namely the boundary condition at the sphere’s surface:

V (r = R, θ) =
∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)× 1 = given Vb(θ). (58)

To solve this condition for the Cℓ, we use the orthogonality of the Legendre polynomials and

hence eq. (49): Treat the given boundary potential Vb(θ) as a function of x = cos θ, then

Vb(x) =
∞
∑

ℓ=0

Cℓ × Pℓ(x) for Cℓ =
2ℓ+ 1

2

+1
∫

−1

Vb(x)× Pℓ(x) dx. (59)

Or in terms of θ rather than x = cos θ,

Cℓ =
2ℓ+ 1

2

π
∫

0

Vb(θ)× Pℓ(cos θ)× sin θ dθ. (60)

Example: Vb(θ) = V0 × cos(3θ).

For boundary potentials which are manifest polynomials of cos θ — or can be brought to such

form using simple trigonometry, such as in our example

Vb = V0 cos(3θ) = 4V0 cos
3 θ − 3V0 cos θ, (61)

— we do not need to evaluate the integrals (60) to find the coefficients Cℓ. Instead, we may

simply expand the polynomial Vb(cos θ) as a finite sum — rather than an infinite series — of

Legendre polynomials using their explicit forms (47). Indeed, power by power in x = cos θ we

have

x = P1(x), x2 = 1
3

(

2P2(x) + P0(x)
)

, x3 = 1
5

(

2P3(x) + 3P1(x)
)

,

x4 = 1
35

(

8P4(x) + 20P2(x) + 7P0(x)
)

, . . .
(62)

Consequently, for our example we have

Vb(cos θ) = 4V0×
2P3(cos θ) + 3P1(cos θ)

5
− 3V0×P1(cos θ) = 8

5V0×P3(cos θ)−
3
5V0×P1(cos θ),

(63)
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hence

C1 = −3
5V0, C3 = +8

5V0, all other Cℓ = 0. (64)

Therefore, inside the sphere the potential is

V (r, θ) = −3
5V0 × P1(cos θ)×

( r

R

)

+ 8
5V0 × P3(cos θ)×

( r

R

)3
, (65)

while outside the sphere

V (r, θ) = −3
5V0 × P1(cos θ)×

(

R

r

)2

+ 8
5V0 × P3(cos θ)×

(

R

r

)4

. (66)

Charges on the spherical surface

Consider a thin spherical shell with some surface charge density σ(θ, φ) — and no other

charges inside or outside the shell. For simplicity, assume axial symmetry, thus σ(θ only). Let’s

find out the potential both inside and outside the spherical shell due to this charge density.

Surface charge densities make for discontinuous electric fields, but the potential V is con-

tinuous across the charged surface. Thus, while in the present situation we do not know the

boundary potential Vb(θ) on the spherical surface, we do know its the same potential both

immediately inside and immediately outside the surface. Consequently, the potential V (r, θ)

inside and outside the sphere is given by the equations (56) and (57) for the same coefficients

Cℓ, whatever they are. In other words,

∀ r, θ : V (r, θ) =
∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×



















( r

R

)ℓ
for r < R,

(

R

r

)ℓ+1

for r > R.

(67)

Next, consider the radial component of the electric field:

Er = −
∂V (r, θ)

∂r
=

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×



















−ℓ
rℓ−1

Rℓ
for r < R,

+(ℓ+ 1)
Rℓ+1

rℓ+2
for r > R.

(68)

Unlike the potential, this radial electric field is discontinuous across the sphere. Indeed, near
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the sphere

Er(r ≈ R) =
∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×















−ℓ

R
just inside the sphere,

+(ℓ+ 1)

R
just outside the sphere,

(69)

with discontinuity

disc(Er) = Er(r = R + ǫ) − Er(r = R− ǫ) =

∞
∑

ℓ=0

Cℓ × Pℓ(cos θ)×
2ℓ+ 1

R
. (70)

Physically, this discontinuity is caused by the surface charge density on the sphere,

disc(Er) =
σ

ǫ0
. (71)

Consequently, the charge density as a function of θ is related to the coefficients Cℓ of the

potential (67) according to

σ(θ) = ǫ0 disc(Er(θ)) =
ǫ0
R

×

∞
∑

ℓ=0

(2ℓ+ 1)× Cℓ × Pℓ(cos θ). (72)

We may also reverse this relation according to eq. (49) to get the coefficients Cℓ from the σ(θ),

Cℓ =
R

2ǫ0
×

π
∫

0

σ(θ)× Pℓ(cos θ)× sin θ dθ. (73)

For example, suppose the sphere is neutral on the whole, but has a quadrupole charge

density

σ(θ) = σ̂ ×
3 cos2 θ − 1

2
= σ̂ × P2(cos θ). (74)

Comparing this angular dependence with eq. (72), we immediately see that the only non-zero
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coefficient Cℓ is the C2, specifically

C2 =
Rσ̂

5ǫ0
. (75)

Consequently, inside the sphere the potential is

V (r, θ) =
σ̂

5ǫ0
×

r2

R
× P2(cos θ), (76)

while outside the sphere

V (r, θ) =
σ̂

5ǫ0
×

R4

r3
× P2(cos θ). (77)

Metal Sphere in External Electric Field

Now consider another example: a metal sphere in uniform external electric field. That is,

far away from the sphere the electric field asymptotes to the uniform E = Eẑ, hence

for r → ∞, V → −Ez = −Er × cos θ = −Er × P1(cos θ). (78)

The sphere itself is neutral, so without loss of generality we may assume it has zero potential.

Let’s find the potential outside the sphere for these boundary conditions. Since we no

longer have V → 0 at infinity, the radial function fℓ(r) could be a general combination of two

solutions,

fℓ(r) = Aℓ × rℓ +
Bℓ

rℓ+1
(79)

with Aℓ 6= 0. On the other hand, asking for V = 0 all over the sphere requires fℓ(r = R) = 0

and hence

Bℓ = −R2ℓ+1 × Aℓ . (80)

Consequently, the general form of the potential outside the sphere looks like

V (r, θ) =

∞
∑

ℓ=0

Aℓ × Pℓ(cos θ)×

(

rℓ −
R2ℓ+1

rℓ+1

)

(81)

for some coefficients Aℓ.
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To find these coefficients, we compare the asymptotic behavior of the potential (81) for

large r,

V −→
∞
∑

ℓ=0

Aℓ × Pℓ(cos θ)× rℓ (82)

to the desired asymptotics (78). This comparison immediately tells us that

A1 = −E, all other Aℓ = 0, (83)

hence

V (r, θ) = −E

(

r −
R3

r2

)

× cos θ, (84)

or in Cartesian coordinates

V (x, y, z) = −Ez + ER3 ×
z

(x2 + y2 + z2)3/2
(85)

The first term here is due to the external electric field, while the second term is due to induced

charges on the sphere’s surface.

Taking the gradient of the potential (85), we obtain the net electric field,

E(x, y, z) = Eẑ + ER3

(

3z

r4
r̂ −

1

r3
ẑ

)

= Eẑ +
ER3

r3

(

2
z

r
ẑ −

x

r
x̂ −

y

r
ŷ
)

. (86)

Here is the picture of the field lines for this electric field:
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Spherical Harmonics

Finally, consider a more general 3D problem with a spherical boundary, but with a given

boundary potential Vb(θ, φ) (or a given boundary charge σ(θ, φ)) which is not axially symmet-

ric but depends on both angular coordinates θ and φ. In this case, instead of the Legendre

polynomials Pℓ(cos θ) we should use the spherical harmonics Yℓ,m(θ, φ). You will study these

spherical harmonics in some detail in the Quantum Mechanics class in the context of angular

momentum quantization, hydrogen atom wavefunctions, etc., etc. For the moment, let me skip

the details and simply summarize a few key properties of the spherical harmonics.

• The spherical harmonics are solutions to the partial differential equation

∂2Y

∂θ2
+

1

tan θ

∂Y

∂θ
+

1

sin2 θ

∂2Y

∂φ2
= −ℓ(ℓ+ 1)Y (87)

subject to the conditions of single-valuedness and no singularities anywhere on the sphere.

In terms of the θ and φ coordinates this means periodicity in φ and no singularities at

the poles θ = 0 and θ = π.

• The solutions exist only for integer ℓ = 0, 1, 2, 3, . . .. For each such ℓ, there are 2ℓ + 1

independent solutions Yℓ,m(θ, φ) labeled by another integer m running from −ℓ to +ℓ.

• The Yℓ,m have form Yℓ,m(θ, φ) = (const) × Pℓ(m)(cos θ) × exp(imφ) where the Pℓ(m)(x)

are called the associate Legendre polynomials, even though some of them are not really

polynomials. Instead, Pℓ(m)(cos θ) = (sin θ)|m| × degree (ℓ− |m|) polynomial of cos θ.

• For m 6= 0 the spherical harmonics are complex; by convention, Y ∗
ℓ,m = (−1)mYℓ,−m.

Also, all the harmonics with m 6= 0 vanish at the poles θ = 0 and θ = π.

• The only harmonics which do not vanish at the poles are the Yℓ,0. These harmonics

are independent of φ and are proportional to Pℓ(cos θ), but have different normalization:

Yℓ,0(θ, \φ) =
√

(2ℓ+ 1)/4π × Pℓ(cos θ).

• The spherical harmonics are orthogonal to each other and normalized to 1. That is

∫∫

Y ∗
ℓ,m(θ, φ) Yℓ′,m′(θ, φ) d2Ω(θ, φ) = δℓ,ℓ′δm,m′ . (88)

• Any smooth, single-valued function g(θ, φ) can be decomposed into a series of spherical
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harmonics,

g(θ, φ) =
∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,mYℓ,m(θ, φ) for Cℓ,m =

∫∫

g(θ, φ) Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (89)

• Let F (r, θ, φ) = rℓ×Yℓ,m(θ, φ). Then in Cartesian coordinates, F (x, y, z) is a homogeneous

polynomial in x, y, z of degree ℓ. Moreover, F (x, y, z) obeys the Laplace equation.

Now let’s apply the spherical harmonics to the electrostatic potential problems with spher-

ical boundaries but with φ-dependent boundary conditions. Mathematically, we look for a

function V (r, θ, φ) which:

[1] Obeys the Laplace equation inside or outside some sphere of radius R.

[2] Is smooth and single-valued everywhere in the volume in question; in particular, V is peri-

odic in φ and has no singularities at θ = 0 or θ = π.

[3] For the inside of a spherical cavity, V is smooth at r → 0; for the outside or a sphere, V

asymptotes to zero for r → ∞.

[4] On the spherical boundary the potential has given form, V (R, θ, φ) = Vb(θ, φ).

Using the separation of variables method, we start by looking for solutions to conditions

[1,2,3] (but not [4]) of the form

V (r, θ, φ) = f(r)× g(θ, φ); (90)

note incomplete separation of variables at this stage. In light of eq. (33) for the Laplace operator

in spherical coordinates,

r2

V
×∆V =

r2f ′′

f
+

2rf ′

f
+

1

g

(

∂2g

∂θ2
+

1

tan θ

∂g

∂θ
+

1

sin2 θ

∂2g

∂φ2

)

, (91)

so to get a solution to the Laplace equation ∆V = 0 we need

∂2g

∂θ2
+

1

tan θ

∂g

∂θ
+

1

sin2 θ

∂2g

∂φ2
+ C × g = 0, (92)

r2
d2f

dr2
+ 2r

df

dr
− C × f = 0 (93)

17



for the same constant C. By inspection, eq. (92) is the same as eq. (87), so we know that

the solutions exist only for C = ℓ(ℓ + 1) for integer ℓ = 0, 1, 2, 3, . . ., and the solutions are the

spherical harmonics g(θ, φ) = Yℓ,m(θ, φ) or their linear combinations. Thus,

V (r, θ.φ) = f(r)× Yℓ,m(θ, φ) (94)

where the radial function f(r) obeys

r2f ′′(r) + 2rf ′(r) − ℓ(ℓ+ 1)f(r) = 0. (95)

As we saw earlier in these notes, the solutions to this equation have form

f(r) = A× rℓ +
B

rℓ+1
(96)

for some constants A and B. For a spherical cavity, regularity of the solution at the center

requires B = 0 while for an outside of a sphere the asymptotic condition at ∞ requires A = 0.

However, for a space between two spherical boundaries, we may have both A 6= 0 and B 6= 0.

Altogether, the general solution to conditions [1,2,3] for the inside of a spherical cavity has

form

V (r, θ, φ) =

∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m ×
( r

R

)ℓ
× Yℓ,m(θ, φ), (97)

while the general solution for the outside of a sphere looks like

V (r, θ, φ) =

∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m ×

(

R

r

)ℓ+1

× Yℓ,m(θ, φ). (98)

In both cases, the constant coefficients Cℓ,m follow from the boundary condition [4] at the

spherical surface:

V (R, θ, φ) =

∞
∑

ℓ=0

+ℓ
∑

m=−ℓ

Cℓ,m × Yℓ,m(θ, φ). (99)

Since the spherical harmonics form a complete orthonormal basis for the functions of the spher-

ical angles (θ, φ), we may use eq. (89) to obtain the coefficients Cℓ,m for any given boundary

potential Vb(θ, φ) on the spherical surface, namely

Cℓ,m =

∫∫

Vb(θ, φ)× Y ∗
ℓ,m(θ, φ) d

2Ω(θ, φ). (100)
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