
RELATIVISTIC ENERGY AND MOMENTUM

Non-relativistically, the momentum and the energy of a free particle are related to its

velocity v as

p = mv, E = const + 1
2
mv2, (1)

where m is the particle’s mass. In special relativity, the relations are similar for particles

moving much slower than light, but for fast particles there are more complicated formulae

p = γmv =
mv

√

1− (v/c)2
= mv

(

1 +
v2

2c2
+ O

(

v4

c4

))

(2)

and

E = γmc2 = mc2 + 1
2
mv2 +

3mv4

8c2
+ O

(

mv6

c4

)

. (3)

The m in these formulae is the rest mass, i.e. the mass of the particle in its rest frame.

Nowadays, when we say mass we mean the rest mass, but in the early days of the relativity

theory the name mass was commonly used for the relativistic inertia or relativistic mass

M(v) = γ(v)×m; (4)

in terms of this relativistic mass

p = M(v)v and E = M(v)c2. (5)

In particular, Einstein’s famous equation E = Mc2 was written in terms of the relativistic

mass M(v) rather than the rest mass m!

1



Derivation of relativistic momentum and energy.

Before we explore the consequences of the relativistic formulae (2) for the momentum

and the energy, let’s derive them from the conservation laws. In any collision of particles,

the net momentum is conserved,

particles
∑

i

pafter
i =

particles
∑

i

pbefore
i , (6)

and in an elastic collision the net kinetic energy is also conserved,

particles
∑

i

Kafter
i =

particles
∑

i

Kbefore
i , (7)

Moreover, these conservation laws must work in any inertial frame of reference! Alas, plug-

ging non-relativistic formulae (1) for the particles’ energies and momenta into these conser-

vation laws make them invariant under the Galilean boosts v′ = u + v, but not under the

Lorentz boosts which act non-linearly on the velocities.

To repair the law of momentum conservation, we need to change Newton’s formula

p = mv to

p = M(v)v (8)

with some velocity-dependent inertia M(v), although by the rotational symmetry of the

3-space it should depend only on the speed v = |v| but not on the velocity’s direction. For

the moment, all we know is that M is some analytic function of (v/c)2; we shall determine

its exact form from the Lorentz invariance of the momentum conservation in collisions.

Indeed, consider an elastic collision of two similar particles in the center-of-mass frame.

Relativistically, this frame is defined as the frame where the net momentum is zero before

the collision and hence also after the collision. Thus, in the CM frame, the two particles

collide head-on — so their momenta is equal in magnitude and opposite in direction, — and
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after the collision they also fly in opposite directions. In terms of velocities,

M(va)va + M(vb)vb = 0 before the collision,

M(vc)vc + M(vd)vd = 0 after the collision,
(9)

and since M(−v) = M(+v) it follows that

vb = −va , vc = −vd , (10)

or graphically

θva

vb

vc

vd

Also, assuming the kinetic energy K(v) is some monotonically increasing function of the

speed |v| which does not depend on the velocity’s direction, conservation of energy in an

elastic collision makes the particle’s speeds after the collision equal to their speeds before

the collision, thus

|va| = |vb| = |vc| = |vd| = v. (11)

Now let’s consider the same collision in the lab frame where one of the particles was at

rest before the collisions. Lorentz-boosting all the velocities by u = −vb = +va, we find (in
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the coordinates where x axis points in the direction of va)

vlaba,x =
2v

1 + β2
,

vlaba,y = vlabb,x = vlabb,y = 0,

vlabc,x =
v(1 + cos θ)

1 + β2 cos θ
,

vlabc,y =
v sin θ

γ(1 + β2 cos θ)
,

vlabd,x =
v(1− cos θ)

1 − β2 cos θ
,

vlabd,y =
−v sin θ

γ(1− β2 cos θ)
,

(12)

or graphically

va
vb

vc

vd

Note that after the collision vlabd,y 6= −vlabc,y , so to assure momentum conservation in the y

direction we must have velocity dependent relativistic inertia M(v); specifically, we need

M(vlabd )× −v sin θ
γ(1− β2 cos θ)

+ M(vlabc )× v sin θ

γ(1 + β2 cos θ)
= 0 (13)

and hence

M(vlabc )

M(vlabd )
=

1 + β2 cos θ

1− β2 cos θ
. (14)

In particular, consider a grazing collision with a very small scattering angle θ. In the limit
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of θ → 0, we have

vlab
d → 0 while vlab

d → vlab
a , (15)

so eq. (14) becomes

M(vlaba )

M(0)
=

1 + β2

1− β2
. (16)

Moreover, the expression on the RHS here is nothing but γ(vlaba ); indeed,

1

γ2(vlaba )
= 1 − (vlaba /c)2 = 1 −

(

2β

1 + β2

)2

=

(

1− β2

1 + β2

)2

=⇒ γ(vlaba ) =
1 + β2

1− β2
.

(17)

Thus, momentum conservation requires

M(vlaba )

M(0)
= γ(vlaba ) (18)

and hence for any other speed v′

M(v′) = γ(v′)×M(0). (19)

Given this formula for the relativistic inertia M(v) — and hence the momentum

p = M(v)v = γ(v)mrestv (20)

— the Second Law of Newton becomes

F =
dp

dt
= mrest

d(γv)

dt
(21)

In terms of the acceleration a = dv/dt,

d(γv)

dt
= γa +

(

dγ

dt
= γ3 × (v · a)

c2

)

v = γa⊥ + (γ + γ3β2 = γ3)a‖ , (22)

hence

a⊥ =
F⊥

γmrest
but a‖ =

F‖

γ3mrest
. (23)

In the early days of the special relativity theory, the γmrest was called the transverse rela-

tivistic mass while γ3mrest was called the longitudinal relativistic mass. This proliferation of
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different things called some kind of mass was rather confusing, so eventually the name mass

was reserved for the rest mass m = M(0).

Now consider the relativistic kinetic energy K(v). Since it depends only on the speed

|v|, we may write it as a function of γ(v),

K(v) = f(γ(v)) (24)

for example, the non-relativistic kinetic energy can be written as

Knon−rel(v) =
mc2

2

(

1 − 1

γ2(v)

)

. (25)

In an elastic collision, the net kinetic energy is conserved, Kc +Kd = Ka+Kb, so in the lab

frame we should have

f(γlabc ) + f(γlabd )) = f(γlaba ) + f(γlabb ) (26)

But in the lab frame γlabb = 1 and we have already calculated

γlaba =
1 + β2

1− β2
. (27)

In a similar fashion

γlabc =
1 + β2 cos θ

1− β2
, γlabd =

1− β2 cos θ

1− β2
; (28)

indeed

1

γ2(vlabc )
= 1 −

(vlabc,x )
2 + (vlabc,y )

2

c2
= 1 − β2(1 + cos θ)2

(1 + β2 cos θ)2
− β2 sin2 θ

γ2(1 + β2 cos θ)2

=
(1 + β2 cos θ)2 − β2(1 + cos θ)2 − β2(1− β2) sin2 θ

(1 + β2 cos θ)2

(29)
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where

the numerator = (1 + β2 cos θ)2 − β2(1 + cos θ)2 − β2(1− β2) sin2 θ

= 1 + 2β2 cos θ + β4 cos4 θ

− β2 − 2β2 cos θ − β2 cos2 θ − β2(1− β2) sin2 θ

= 1 − β2 − β2(1− β2) cos2 θ − β2(1− β2) sin2 θ

= 1 − β2 − β2(1− β2) = (1− β2)2

,

(30)

thus

1

γ2(vlabc )
=

(

1− β2

1 + β2 cos θ

)2

=⇒ γlabc =
1 + β2 cos θ

1− β2
, (31)

and likewise

γlabd =
1− β2 cos θ

1− β2
. (32)

With these formulae for the γa,b,c,d in the lab frame, the kinetic energy conservation in

the elastic collision requires

f

(

1 + β2 cos θ

1− β2

)

+ f

(

1− β2 cos θ

1− β2

)

= f

(

1 + β2

1− β2

)

+ f(1), (33)

and this equality must hold for any angle θ and any β ≤ 1. Mathematically, the only analytic

function which obeys this requirements is the linear function

f(γ) = A× γ + B (34)

for some constants A and B. In terms of the kinetic energy, this means

K(v) = A× γ(v) + B, (35)

and in order to agree with the non-relativistic limit of the kinetic energy, we need A = mc2
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and B = −A, thus

K(v) = mc2 × (γ(v)− 1) = 1
2
mv2 + O

(

mv4

c2

)

. (36)

Or in terms of the total energy of the particle,

E = mc2 × γ(v) + const = M(v)c2 + const. (37)

To find the constant term here, we need to consider an inelastic process in which the net

energy of all kinds is conserved but the kinetic energy is not. And as Einstein found out,

the mass is also not conserved!

To see how this works consider a nucleus emitting two photons of equal frequencies in

opposite directions,

(ω,−k) (ω,+k)

The two photons have opposite momenta ±k, so their net momentum is zero and there is no

recoil — the nucleus initially at rest remains at rest. However, its internal energy U drops

by the energy of the two photons,

∆U = U1 − U2 = 2h̄ω (38)

Now consider the same process in a different frame where the nucleus moves with velocity v

in the direction of one of the photons. In this frame, the photons have different frequencies

due to Doppler effect,

ω1 = γ(1 + β)× ω, ω2 = γ(1− β)× ω, (39)
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and hence larger net energy

h̄ω1 + h̄ω2 = 2h̄ω × γ. (40)

This energy comes from the net kinetic + internal energy of the nucleus E = K + U , hence

∆E = E1 − E2 = ∆K + ∆U = γ × 2h̄ω. (41)

But the internal energy change is only ∆U = 2h̄ω, so the kinetic energy must also change

by

∆K = (γ − 1)× 2h̄ω. (42)

On the other hand, we know that in its original frame the nucleus does not recoil, so in any

other frame its velocity should also stay constant, whatever it was. And the only way to

change the kinetic energy of a nucleus without changing its velocity is by changing its mass,

m2 = m1 − ∆m, (43)

such that

(γ − 1)c2 ×∆m = ∆K = (γ − 1)× 2h̄ω, (44)

thus

∆m =
2h̄ω

c2
(45)

Note velocity independence of this formula!

In terms of the internal energy U of the nucleus — i.e., the energy it has when it’s not

moving —

∆m =
∆U

c2
, (46)

or in terms of the net energy E = K + U ,

∆E = c2 ×∆M(v). (47)

The same formula applies to other inelastic processes, even when there is a recoil, and this
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have lead Einstein to his famous formula

E = M(v)× c2 = γ(v)mc2 =
mc2

√

1− (v/c)2
. (48)

In particular, a particle at rest has a tremendous hidden energy E0 = mc2. In any inelastic

process, this energy increases or decreases, and this leads to an increase or decrease of the

net mass of the system.

In general, any change of net energy changes the net mass of the system, even in such

mundane non-relativistic processes as pool-ball collisions or chemical reactions, although the

resulting ∆m is too small to measure. But in nuclear reactions ∆m is typically of the order

10−3×m, and that can be easily measured by a mass spectrometer. In fact, once can calculate

the energy releases or consumed in some nuclear reaction by simply looking up the masses

of initial and final nuclei and calculating the ∆m. For example, in the deuterium-tritium

fusion reaction

D2
1 + T 3

1 = He42 + n10, (49)

the masses are

m(D) = 2.014 102 u,

m(T ) = 3, 016 049 u,

m(He4) = 4, 002 602 u,

m(n) = 1.008, 665 u,

(50)

so in the fusion reaction the net mass is reduced by

∆m = 18, 884 · 10−3 u, (51)

where u is the atomic mass unit,

u = 1.660 539 · 20−27 kg = 931.494 MeV/c. (52)

Consequently, the fusion reaction should release energy

∆E = (18, 884 · 10−3 u)× c2 = 17.59 MeV.

and the experimentally measured fusion energy indeed agrees with this value.
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In a more extreme example, an electron and a positron can annihilate each other, so their

entire hidden energy 2 × mec
2 is converted to the energy of the photons produced in the

annihilation. On the other hand, when highly energetic elementary particles collide, their

kinetic energies can be converted to the mass of some heavy new particles. For example, at

the Large Hadron Collider at CERN, the protons are accelerated till their γ factor reaches

about 7000; in other words, their kinetic energy is 7000 larger than the rest energy mpc
2. In

GeV units, each proton has energy about 6500 GeV, and when two protons collide, a notable

fraction of the net 13,000 GeV energy is converted to the masses of many particles particles

created in the collision. Some of these particles can be much heavier than the original proton,

for example the Higgs particle has mass MH = 126 GeV/c2.

Energy–momentum 4–vector.

The relativistic energy and momentum of a free particle form a Lorentz 4–vector

pµ =

(

E

c
,p

)

= muµ (53)

where uµ is the 4–velocity of the particle. Indeed, in components

pi = γvim = uim and p0 =
E

c
= γcm = u0m. (54)

Consequently, the net energy and momentum of any multi-particle system also form a 4–

vector

P µ
net =

(

Enet

c
Pnet

)

=

particles
∑

a

mau
µ
a (55)

which transforms under Lorentz symmetries as any other 4–vector,

E′ net = γ(Enet − vP net
‖ ),

P ′ net
‖ = γ

(

P net
‖ − v

c2
Enet

)

,

P′ net
⊥ = Pnet

⊥ .

(56)

Therefore, if the energy and the momentum are conserved in one frame of reference, then

they are also conserved in any other reference frame!
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Now consider the Lorentz square of the energy-momentum 4–vector pµ. For a single

particle we have

pµpµ =
E2

c2
− p2 = (γmc)2 − (γmv)2 = m2γ2(c2 − v2) = m2c2, (57)

or in terms of the particle’s 4–velocity uµ,

pµ = muµ =⇒ pµpµ = m2 × uµuµ = m2c2. (58)

Either way, the energy and the momentum of a particle are related as

E2 = c2p2 + m2c4. (59)

In the 4–momenum space, this formula defines a hyperbolic hypersurface called the mass

shell.

In the non-relativistic limit, the mass shell condition becomes

E = mc2 +
p2

2m
− p4

8m3c2
+ · · · , (60)

while in the ultra-relativistic limit γ ≫ 1 and hence |p| ≫ mc we get

E = c|p| +
m2c3

2|p| + · · · . (61)

In particular, for the massless particles like the photons

E = c|p|, (62)

in perfect agreement with ω = c|k| for the EM waves in vacuum and the quantum formulae

E = h̄ω and p = h̄k.
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In general, massless particles (i.e., particles having zero rest mass) must move with

the speed of light — otherwise, they would have zero energy and zero momentum — while

particles with non-zero rest masses must move slower than light. Among the presently known

particles, only the photon is exactly massless. The neutrinos do have masses, although they

are very small — less then eV/c2, – and since we cannot detect neutrinos with energies

much less than an MeV, all the neutrinos we have ever detected were ultra-relativistic with

γ > 106, and their speeds were experimentally indistinguishable from the speed of light.

The only reason we know about the neutrino masses is because of the quantum oscillations

between the 3 neutrino species!

To see how the neutrino oscillations work, note that in quantum mechanics, eq. (61) for

the energy of an ultra-relativistic particle becomes the Hamiltonian operator

Ĥ ≈ c|p| +
c3

2|p| M̂
2 (63)

where M̂2 is the 3 × 3 matrix in the Hilbert space of the neutrino species. This matrix is

non-diagonal in the basis in which we make and detect neutrinos, and this causes neutrinos

to oscillate from one species to another. Specifically, if the neutrino is created at time t = 0

in a state vector |ψ0〉, then after it has traveled through long distance L in time t−L/c, its

state vector becomes

|ψ〉 = ei some overall phase × exp

(

i
c3h̄L

2E
M̂2

)

|ψ0〉 . (64)

The matrix exponential of a non-diagonal matrix is itself non-diagonal, and the off-diagonal

matrix elements of this exponential are probability amplitudes for changing the neutrino’s

species. For more information, please see the Wikipedia article on neutrino oscillations.

Next consider the net 4–momentum of two colliding particles — which is also the net

momentum of all the collision products,

P µ = pµ1 + pµ2 =
∑

i

p′µi . (65)
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Let

s = c2PµP
µ; (66)

as a Lorentz square of a 4–vectors, it has the same value in all reference frames. In the center

of mass frame, the net 3–momentum is zero, hence

s = E2
net − c2P2

net = E2
net , (67)

so
√
s is the collision energy in the center of mass frame,

Ecm =
√
s. (68)

In any other frame, the net energy is larger,

E2
net = s2 + c2P2

net = E2
cm + c2P2

net > E2
cm , (69)

but the extra energy is completely tied up the the conserved net momentum, so it does

nothing but make the system’s center of mass move at constant velocity

v =
c2Pnet

Enet

. (70)

The only energy available for making new particles, — or anything else besides the center

of mass motion — is the Ecm =
√
s.

Let’s calculate the center-of-mass energy in the lab frame, where 1 particle moves with

energy E1 and momentum p1 while the second particle of mass M2 is at rest. In this frame

s = (p1 + p2)
2 = (E1 +M2c

2)2 − c2p2
1

= E2
1 + 2E1M2c

2 + M2
2 c

4 − c2p2
1 = M2

1 c
4 + 2E1M2c

2 + M2
2 c

4

= (M1 +M2)
2c4 + 2(E1 −M1c

2)×M2c
2,

(71)

hence in the non-relativistic limit

Ecm =
√
s ≈ (M1 +M2)c

2 + (E1 −M1c
2)× M2

M1 +M2
, (72)
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or in terms of the kinetic energies K = E −Mc2,

Kcm = K1 ×
M2

M1 +M2
. (73)

On the other hand, in the ultra-relativistic limit of E1 ≫ M1c
2, we get

Ecm ≈
√

2E1 ×M2c2 ≪ E1 . (74)

In particle physics, there are two types of collision experiments: the fixed-target experi-

ments, in which a beam of accelerated particles collides with a solid or liquid target, and the

collider experiments in which two particle beams moving in opposite directions are focused

on some point where they collide with each other. In the fixed target experiments, all the

accelerated particles collide with some particle in the target, which makes for a much higher

collision rate than in a collider where most accelerated particles miss each other. On the

other hand, in a collider the entire energy of the two accelerated particles is available in the

CM frame for discovering new physics, while in a fixed-target experiment most of the energy

is wasted on the center of mass motion, and only a small fraction Ecm ≪ E1 goes towards

the interesting physics.

For example, the oldest proton-proton collider at CERN— the PS, which started working

back in 1959 — had two 28 GeV proton beams colliding head on, so the CM-frame energy

available for discovering new physics was 56 GeV. To reach the same energy at a fixed-target

experiment — a proton beam hitting a tank of liquid hydrogen — we need a proton beam

of energy

E1 =
s = E2

cm

2Mpc2
= 1670 GeV, (75)

and no accelerator had reached this energy level until 2010, half a century after the PS.

Ironically, the first accelerator producing proton beams with energy higher than (75) was

the LHC at CERN which is also a collider. Today, the CM-frame collision energy at LHS

is about 13,000 GeV; to reach this energy at a fixed target experiment, we would need a

proton beam of energy

E1 ≈ 90 · 106 GeV, (76)

and we would be lucky to reach this energy level in another half-a-century.
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Let me conclude this section with a few words about relativistic kinematics of particle

collisions — elastic or inelastic — or decays. There are several equations relating the energies

and momenta of all initial-state and final state particles involved in a collision or decay. First,

the the net energy-momentum must be conserved; in a covariant form,

initial
∑

i

pµi =

final
∑

f

p′µf . (77)

Second, for every initial-state or final-state particle, it’s energy and momentum must be

related by eq. (59), or in covariant form

∀i : p2i = m2
i c

2 and ∀f : p
|prime2
f = m2

f c
2. (78)

In may situations, these relations allow us to find the final particles’ energies, or at least

establish the relations between their energies and directions of motion. In the homework

set#12 you will find two problems on this very subject.

In these notes, let me work out a simpler example, the decay of a pion into a muon and

a neutrino,

π+ → µ+ + νµ . (79)

By energy-momentum conservation

pαπ = pαµ + pαν (80)

(where we use α for the Lorentz vector index since µ, ν, and π are used up as the species

labels), hence

p2ν = (pπ − pµ)
2 = p2π + p2µ − 2pπ · pµ ,

p2µ = (pπ − pν)
2 = p2π + p2ν − 2pπ · pν .

(81)

Now let’s use the mass shell conditions

p2π = M2
πc

2, p2µ = M2
µc

2, p2ν = M2
ν c

2 ≈ 0; (82)

16

http://www.ph.utexas.edu/~vadim/Classes/2018s/hw12.pdf
http://www.ph.utexas.edu/~vadim/Classes/2018s/hw12.pdf


plugging them into eqs. (81), we get

2pπ · pµ = M2
πc

2 + M2
µc

2 while 2pπ · pν = M2
πc

2 − M2
µc

2. (83)

Now, in the rest frame of the initial pion

pπ · pµ = (Mπc)× (Eµ/c) − pπ · pµ = Mπ × Eµ − 0, (84)

and likewise

pπ · pν = Mπ ×Eν , (85)

so eqs. (83) give us the energies of the muon and the neutrino as

Eµ =
M2

π +M2
µ

2Mπ
× c2, Eν =

M2
π −M2

µ

2Mπ
× c2.

Numerically, Mπc
2 = 139 MeV, Mµc

2 = 105 MeV, hence after the decay Eµ = 109 MeV and

Eν = 30 MeV.

Relativistic Lagrangian

Consider a relativistic particle moving along some worldline xµ(τ). The action functional

S[worldline] should be invariant under all symmetries of the theory, so for a relativistic

particle S should be invariant under the Lorentz symmetries. The simplest Lorentz invariant

functional of a worldline — and the only such such functional which does not involve higher

derivatives — is the net proper time along the worldline,

S = A×
∫

worldline

dτ (86)

for some constant coefficient A. In a moment, we shall see that getting the right energy and

momentum of the particle calls for A = −mc2.
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Let’s start by writing the action (86) in the Lagrangian form

S =

∫

dt L(x,v). (87)

Since dτ = dt/γ, it follows that the Lagrangian of a free relativistic particle has form

L(v) =
A

γ(v)
= A×

√

1− (v/c)2 . (88)

Consequently, the canonical momentum of the particle is

pcan =
∂L

∂v
= −A

c2
v

√

1− (v/c)2
= −A

c2
γv. (89)

Since the momentum should point in the same direction as the velocity, we need a negative

A. Specifically, if we let A = −mc2, then the canonical momentum becomes the relativistic

momentum p = γmv. Thus,

the action S = −mc2
∫

worldline

dτ, (90)

the Lagrangian L = −mc2
√

1− v2/c2, (91)

the momentum p = +mγv =
mv

√

1− (v/c)2
. (92)

Next, consider the relativistic energy and hence the Hamiltonian stemming from the

Lagrangian (91). Given the canonical momentum (92), the energy function obtains as

E = v · p − L = γmv2 +
mc2

γ
=

mc2

γ

(

γ2β2 + 1 = γ2
)

= mc2 × γ(v), (93)

and this is precisely the relativistic energy we have obtained earlier in these notes. As to the

Hamiltonian, we need to re-express this energy as a function of the canonical momentum
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rather than the velocity, as as we have seen before,

E2(v) = c2p2(v) + (mc2)2, (94)

thus the Hamiltonian

H(p) = +
√

c2p2 + (mc2)2 . (95)

Charged relativistic particle in EM background

Now consider a charged particle interacting with some electromagnetic fields. In these

notes, we are concerned with the particle’s motion rather than the EM fields it produces, so

let’s treat the EM fields and potentials as a fixed background.

For a non-relativistic charged particle, the Lagrangian is

L(x,v) =
mv2

2
− qΦ(x) +

q

c
A(x) · v, (96)

so we may write the net action as

S = Sfree + SEM (97)

where Sfree is the action of a free non-relativistic particle, while

SEM = −q
c

∫

dt
(

cΦ(x) − A(x) · v
)

= −q
c

∫

(

cΦ(x)dt − A(x) · dx(t)
)

= −q
c

∫

worldline

Aµ(x(τ)) dx
µ(τ).

(98)

This action for interaction with the EM fields is manifestly Lorentz invariant, so in a rel-

ativistic theory we should keep exactly as in eq. (98) without any changes. On the other

hand, the free-particle action for a relativistic particle should be changed to (90), so the net

action becomes

S =

∫

worldline

(

−mc2 dτ − q

c
Aµ(x(τ)) dx

µ(τ)
)

. (99)
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From this action we may derive the equation of motion for the charged particle in a

manifestly covariant form. Instead of going through the Euler–Lagrange formalism which

breaks Lorentz symmetry by treating the time t as a special variable, let’s use the minimal

action principle. That is, let’s consider infinitesimal variations of the particle’s worldline,

xµ(τ) → xµ(τ) + δxµ(τ), (100)

calculate the first infinitesimal variation of the action (99), and demand that it vanishes

for any δxµ(τ). Or rather, for any δxµ(τ) which vanishes at the beginning at the end of

the worldline since the starting and the ending points should be fixed when minimizing the

action; this will allow us to integrate by parts without worrying about the boundary terms.

Under infinitesimal variations of the path,

δ(c2dτ2) = δ(dxµdx
µ) = 2dxµ × δdxµ = 2uµdτ × δdxµ, (101)

hence

c2δ(dτ) = uµ × δdxµ . (102)

At the same time,

δ
(

Aµ(x)× dxµ
)

= Aµ(x)× δdxµ + (∂νAµ(x) δx
ν)× dxµ

〈〈 renaming indices µ↔ ν in the second term 〉〉

= Aµ(x)× δdxµ + (∂µAν(x))dx
ν × δxµ,

(103)

hence altogether,

δS =

∫

worldline

(

−muµ × δdxµ − q

c
Aµ(x)× δdxµ − q

c
∂µAν(x)dx

ν × δxµ
)

. (104)

In this formula, everything is a function of τ along the worldline, either directly or via x(τ),

so let’s integrate by parts every term containing the δdxµ(τ):

−muµ × δdxµ = total derivative + d(muµ = pµ)× δxµ

= total derivative +
dpµ
dτ

dτ × δxµ, (105)
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− q

c
Aµ(x)× δdxµ = total derivative +

q

c

(

d(Aµ(x(τ)) = (∂νAµ) dx
ν
)

× δxµ

= total derivative +
q

c
(∂νAµ)u

νdτ × δxµ, (106)

hence

∆S =

∫

worldline

dτ δxµ(τ)×
(

dpµ
dτ

+
q

c
(∂νAµ)× uν − q

c
(∂µAν)× uν

)

. (107)

The worldline obeying the equations of motion minimizes the action, so we should have

δS = 0 for any δxµ(τ), which calls for

dpµ
dτ

+
q

c

(

∂νAµ − ∂νAν = Fνµ

)

× uν = 0 (108)

and hence

dpµ
dτ

= −q
c
Fνµu

ν = +
q

c
Fµνu

ν . (109)

This gives us the charged particle’s equation of motion in a manifestly covariant form; with

raised indices, it becomes

dpµ

dτ
=

q

c
F µνuν . (110)

Note consistency of this equation with constancy of uµuµ = c2, which requires

uµ × duµ

dτ
= 0. (111)

Indeed, for the equation (110) we get

uµ × duµ

dτ
= uµ × q

mc
F µν uν =

q

mc
× uµuνF

µν , (112)

which vanishes by the antisymmetry of the F µν .
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To conclude these notes, let me spell out the covariant equation of motion (110) in 3D

terms. For µ = i = 1, 2, 3,

F iνuν = F ijuj + F i0u0 = (−ǫijkBk)× (−γvj) + Ei× (γc) = γ
(

cE + v×B
)i
, (113)

hence on the RHS of eq. (110),

q

c
F iνuν = γq

(

E +
v

c
×B

)i

. (114)

Apart from the overall factor γ, this is the net electric+magnetic force acting on the charged

particle. At the same time, on the LHS of eq. (110),

dpi

dτ
= γ

dpi

dt
, (115)

hence dropping the factors of γ on both sides of equation, we recover the Newtonian equation

of motion

dp

dt
= F = q

(

E +
v

c
×B

)

. (116)

Note: there are no relativistic corrections to the EM force on the particle. The only rela-

tivistic effect here is the modified relation between the force and the acceleration.

Finally, consider the µ = 0 component of the covariant equation of motion (110). For

µ = 0, on the LHS

dp0

dτ
= γ

dp0

dt
=

γ

c

dE

dt
, (117)

while on the RHS

q

c
F 0νuν =

q

c
F 0juj 〈〈 since F 00 = 0 〉〉

=
q

c
(−Ej)× (−γvj) = +

γq

c
E · v ,

(118)

so dropping the overall factors γ/c on both sides of the equation, we arrive at

dE

dt
= qE · v = F · v, (119)

where F is exactly the same EM force which changes the momentum p. Thus, eq. (119) is

simply the power equation P = F · v, without any relativistic corrections. (Although the

particle’s energy itself is the relativistic E = γmc2.)
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