
RADIATION BY AN ACCELERATING CHANGE

The electric and the magnetic fields produced by a charged particle moving at constant

velocity v are simply the Lorentz transforms of the Coulomb electric field in the particle’s

rest frame, but there is no EM radiation. By contrast, an accelerating particle produces EM

radiation, in which the electric and the magnetic fields decrease with distance as 1/r rather

than 1/r2, and those fields take away some of the particle’s energy. In these notes, we shall

see how it works.

Liénard–Wiechert potentials.

Consider a charged particle moving along some curving worldline xc(t). At any moment

of time t, the charge density and the current density due to this particle are

ρ(x, t) = qδ(3)(y − xc(t)), J(y, t) = qv(t) δ(3)(y − xc(t)), (1)

or in Lorentz-covariant form

Jµ(y) = q

∫

worldline

dτ uµ(τ) δ(4)(y − xc(τ)). (2)

In the Landau gauge, the 4–potential Aµ(x) due to this current is given by the retarded

Green’s function

Aµ(x) =
2

c

∫

d4y Jµ(y)× δ((x− y)2)Θ(x0 − y0)

=
2q

c

∫

worldline

dτ uµ(τ)× δ((x− xc(τ))
2)Θ(x0 − x0c(τ)).

(3)

For any xν , the δ–function and the Θ–function select the point xνc (τ) where the particle’s

worldline intersects the past light cone with vertex at the xν . For any particle moving slower

than light, such intersection is always unique. In 3D terms, it’s described by the retarded

time condition for the tc

x0 − ctc = |x− xc(tc)|, (4)

and in the following I shall use the label ‘ret’ to indicate quantities that should be evaluated

at this retarded time rather than at the observer time x0/c. I shall also use R and n for the
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length and the direction of the 3-vector x−xc(tc), and in 4D notations I’ll promote n to the

light-like unit vector nν = (1,n), thus

xµ − xµc (τret) = Rnµ. (5)

To evaluate the integral (3) over the δ–function, we need the derivative of the δ–function’s

argument WRT the integration variable τ ,

d

dτ
(x−xc(τ))

2 = 2(x−xc)ν

(

d(x− xc(τ))
ν

dτ
= −uν

)

= −2uν(x−xc)
ν = −2uνn

νR, (6)

hence

Aµ(x) =

[

quµ

R(uνnν)

]

ret

. (7)

In components

uνn
ν = γ(c − v · n) = γc(1 − ββββββββββ · n), (8)

hence

Φ(x) =

[

q

R(1− ββββββββββ · n)

]

ret

and A(x) =

[

qββββββββββ

R(1− ββββββββββ · n)

]

ret

. (9)

The potentials (9) are called the Liénard–Wiechert potentials after Alfred–Marie Liénard

and Emil Wiechert who derived them in 1898–1900.

The EM tension fields F µν

Given the Liénard–Wiechert potentials (7), the EM tension fields F µν(x) follow as deriva-

tives

F µν(x) = ∂µAν(x) − ∂νAµ(x). (10)

But when taking these derivatives, one should remember Rnν = xν − xνc (τ) depends on

the observer position xν both explicitly and via τ being constrained by the retarded time
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condition, and that the uµ also depends on τ and hence on the xν , thus

F µν(x) =

[

∂µ
(

quν

u · (x− xc)

)]

@fixed τ

+
∂τ

∂xµ
×

∂

∂τ

(

quν

u · (x− xc)

)

− (µ ↔ ν). (11)

In the explicit derivative term, the xµ dependence comes only via the u · (x− xc) factor in

the denominator, hence

[

∂µ
(

quν

u · (x− xc)

)]

@fixed τ

= −
quν

[u · (x− xc)]2
×
(

∂µ(u·(x−xc)) = uµ
)

= −
quµuν

[u · (x− xc)]2
.

(12)

Thus expression is manifestly symmetric in the µ and ν indices, so it cancels out from the

F µν after the anti-symmetrization. Thus, we are left with

F µν(x) =
∂τ

∂xµ
×

∂

∂τ

(

quν

u · (x− xc)

)

− (µ ↔ ν). (13)

The x derivative of τ in this formula stems from maintaining the constraint (x−xc(τ))
2 ≡ 0

for all observer points x, hence

0 = d
[

(x−xc(τ))
2
]

= 2(x−xc)µ×(dxµ− uµdτ) = 2(x−xc)µ×dxµ − 2(x−xc)u
µ×dτ (14)

and therefore

∂τ

∂xµ
=

(x− xc)
µ

(x− xc) · u
. (15)

Plugging this formula into eq. (13), we arrive at

F µν(x) =
(x− xc)

µ

(x− xc) · u
×

∂

∂τ

(

quν

u · (x− xc)

)

− (µ ↔ ν). (16)

Next, let’s define the 4–acceleration vector

wµ def
=

duµ

dτ
, (17)
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so in an external EM field F µν
ext

wµ =
q

mc
F µν
extuν . (18)

In components,

w0 = γ
d

dt
(cγ) = cγ4

(

ββββββββββ ·
dββββββββββ

dt

)

= γ4(ββββββββββ · a),

w = γ
d

dt
(γv) = γ2a + γ4(ββββββββββ · a)ββββββββββ,

(19)

where a = dv/dt is the particle’s acceleration in 3D terms. Another useful acceleration-

related 4–vector is

Wν def
= wν −

w · (x− xc)

u · (x− xc)
× uν = wν −

wαn
α

uαnα
× uν . (20)

In 3D terms

wαn
α

uαnα
=

γ4(ββββββββββ · a) − γ2(a · n) − γ4(ββββββββββ · a)(ββββββββββ · n)

γc(1− ββββββββββ · n)
=

γ3

c
(ββββββββββ · a) −

γ(a · n)

c(1− ββββββββββ · n)
, (21)

hence

W0 = γ4(ββββββββββ · a) −

(

γ3

c
(ββββββββββ · a) −

γ(a · n)

c(1− ββββββββββ · n)

)

γc

= +
γ2(a · n)

1− ββββββββββ · n
,

~W = γ4(ββββββββββ · a)ββββββββββ + γ2a −

(

γ3

c
(ββββββββββ · a) −

γ(a · n)

c(1− ββββββββββ · n)

)

γv

= γ2a +
γ2(n · a)ββββββββββ

1− ββββββββββ · n
.

(22)

The wµ and Wµ vectors are useful for calculating the τ -derivatives in eq. (16) for the

EM fields generated by the moving charge. Indeed, in terms of the wµ,

∂

∂τ

(

uν(x− xc)ν
)

= wν(x− xc)ν + uν
(

∂(x − xc)ν
∂τ

= −uν

)

= wν(x− xc)ν − uνuν = w · (x− cc) − c2,

(23)
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hence

∂

∂τ

(

uν

u · (x− xc)

)

=
wν

u · (x− xc)
−

uν(w · (x− xc))

(u · (x− xc))2
+

c2uν

(u · (x− xc))2

=
Wν

u · (x− xc)
+

c2uν

(u · (x− xc))2

(24)

and that’s where the Wµ vector becomes useful. Plugging eq. (24) into eq. (16) for the F µν

fields, we arrive at

F µν(x) =

[

q[(x− xc)
µWν − (x− xc)

νWµ]

[(x− xc) · u]2
+

qc2[(x− xc)
µuν − (x− xc)

νuµ]

[(x− xc) · u]3

]

ret

(25)

or in terms of the distance R = |x− xc| and the lightlike unit vector nµ,

F µν(x) =

[

q[nµWν − nνWµ]

R[nαuα]2
+

qc2[nµuν − nνuµ]

R2[nαuα]3

]

ret

. (26)

The two terms here have different physical origins — the first term is due to the particle’s

acceleration, while the second terms follows just from its charge and velocity, — and have

different distance dependences, 1/R versus 1/R2. At large distances, the first term domi-

nates, and the 1/R scaling of the fields translates to the 1/R2 scaling of the Poynting vector

and therefore finite EM power per unit of solid angle. Thus, the first term

F µν
rad =

[

q[(x− xc)
µWν − (x− xc)

νWµ]

[(x− xc) · u]2

]

ret

(27)

can be identified as the EM wave radiated by the accelerating charge.

On the other hand, the second term

F µν
C =

[

qc2[nµuν − nνuµ]

R2[nαuα]3

]

ret

(28)

which scales with distance as 1/R2 is basically the Lorentz-transformed Coulomb field of

a point charge. To see how it works, consider a charged particle which never accelerates

but simply keeps moving at a constant velocity v. As we saw in the homework set#11

5

http://www.ph.utexas.edu/~vadim/Classes/2018s/hw11.pdf


(problem 3), the the Coulomb electric field Lorentz-boosted to the lab frame can be written

in the covariant form as

F µν
C (x) =

q

c

(x− xc)
µuν − (x− xx)

νuµ

[

(1/c2)((x− xc) · u)2 − (x− xc)2
]3/2

, (29)

where xνc can be evaluated at any point τ on the particle’s worldline. In that homework, we

have evaluated it at the current time (same as the observer’s time), but now let’s evaluated

it at the retarded time so that (x− xc)
2 = 0. Consequently, eq. (29) becomes

F µν
C (x) =

[

qc2
[

(x− xc)
µuν − (x− xx)

νuµ
]

[(x− xc) · u]3

]

ret

=

[

qc2[nµuν − nνuµ]

R2[nαuα]3

]

ret

, (30)

in perfect agreement with eq. (28).

If the particle happened to have zero acceleration at the retarded time but had changed

its velocity afterward, then we would need eq. (28) rather than (29)to find its EM fields.

Let’s spell out this formula in 3D terms. First we spell out

nαuα = γc(1− n · ββββββββββ), (31)

(niu0 − n0ui) = γc(ni − βi), (32)

(niuj − njui) = γcǫijk(n× ββββββββββ)k, (33)

and then we get

E(x) =

[

q(n− ββββββββββ)

R2γ2(1− n · ββββββββββ)3

]

ret

,

B(x) =

[

q(−n× ββββββββββ)

R2γ2(1− n · ββββββββββ)3

]

ret

= nret × E(x).

(34)

Now consider the acceleration-dependent EM radiation

F µν
rad =

[

q[(x− xc)
µWν − (x− xc)

νWµ]

[(x− xc) · u]2

]

ret

(27)

6



and let’s spell it out in 3D terms. This time, the numerator algebra is a bit more involved:

nW0 − n0 ~W = n

(

γ2(a · n)

1− n · ββββββββββ

)

− (1)

(

γ2a +
γ2(a · n)ββββββββββ

1− n · ββββββββββ

)

=
γ2

1− n · ββββββββββ

(

(a · n)n − a + (n · ββββββββββ)a − (a · n)ββββββββββ
)

=
γ2

1− n · ββββββββββ

(

n× (n× a) − n× (ββββββββββ × a) = n× ((n− ββββββββββ)× a)
)

(35)

for the electric field, and

−n× ~W = −n×

(

γ2a +
γ2(a · n)ββββββββββ

1− n · ββββββββββ

)

= −
γ2

1− n · ββββββββββ
n×

(

a − (n · ββββββββββ)a + (a · n)ββββββββββ = a + n× (ββββββββββ × a)
)

=
γ2

1− n · ββββββββββ

(

−n× a − n× (n× (ββββββββββ × a))
)

=
γ2

1− n · ββββββββββ

(

n×
(

n× ((n− ββββββββββ)× a)
)

)

(36)

for the magnetic field. But at the end of this calculation, we get fairly simple formulae for

the radiated fields:

Erad(x) =

[

q

c2R

n× ((n− ββββββββββ)× a)

(1− n · ββββββββββ)3

]

ret

, (37)

Brad(x) =

[

q

c2R

n(n× ((n− ββββββββββ)× a))

(1− n · ββββββββββ)3

]

ret

= nret × Erad(x). (38)

Note that both of these fields are ⊥ to the direction n from the charge to the observation

point, and the E and B fields are ⊥ to each other. This — as well as the 1/R behavior of

the fields — is the typical behavior or the EM wave radiated by the accelerating charge, and

that’s why we call the fields (37) and (38) the radiated fields.
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EM power radiated by an accelerated charge

The energy flux density of the EM fields (37) and (38) radiated by an accelerated charges

given by the Poynting vector

S =
c

4π
E×B (39)

(in Gauss units). For E ⊥ n and B = n × E, the Poynting vector points in the radial

direction,

S =
c|E|2

4π
n ; (40)

in particular, for the fields (37) and (38),

S =
q2

4πc3

[

∣

∣n× ((n− ββββββββββ)× a)
∣

∣

2

R2(1− n · ββββββββββ)6
n

]

ret

. (41)

To find the net power radiated by the charge into a unit of solid angle, we surround it by

sphere of some large radius R. To be precise, we center this sphere at the location xc(tret)

where the charge was at the retarded time tret = t − R/c, so that the radiation emitted

by the charge at that time would reach all points of the sphere at the same moment t.

Consequently, the EM power crossing the sphere at time t — and hence emitted by the

charge at the retarded time — is

dP

dΩ
= R2n · S =

q2

4πc3
×

∣

∣n× ((n− ββββββββββ)× a)
∣

∣

2

(1− n · ββββββββββ)6
(42)

in Gauss units, or

dP

dΩ
=

q2

16π2ǫ0c3
×

∣

∣n× ((n− ββββββββββ)× a)
∣

∣

2

(1− n · ββββββββββ)6
(43)

in MKSA units.
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Larmor Formula

Before we explore eq. (42) in all its relativistic glory, let’s take a look at its non-relativistic

limit. So let’s assume that the charge’s velocity v(t) is time-dependent but always stays much

slower than the speed of light, |v| ≪ c. In this limit, β ≪ 1 so eq. (42) becomes a drastically

simpler formula

dP

dΩ
=

q2

4πc3
×
∣

∣n× (n× a)
∣

∣

2
. (44)

Or in terms of the acceleration magnitude a and the angle θ between the acceleration and

the direction n towards the observer,

dP

dΩ
=

q2a2

4πc3
× sin2 θ. (45)

The angular distribution of this radiated power is similar to the radiation by a linear dipole:

no power is radiated in the direction of the acceleration a or in the opposite direction, while

the directions ⊥ a receive the maximal power. Note that it’s the direction of the acceleration

which determines the power distribution, while the velocity direction has no effect in the non-

relativistic limit. Thus, a particle accelerating along a straight line radiates mostly sideways

but not in the forward or backward direction, while the particle moving at a constant speed

in a horizontal circle radiates mostly upward, downward, and in the tangent direction to the

circle, but not in the radial direction towards or away from the center.

The total power radiated in all directions by the accelerating charge is given by the

Larmor formula

P =
q2a2

4πc3
×

8π

3
=

2q2a2

3c3
(46)

in Gauss units, or

P =
q2a2

6πǫ0 c3
(47)

in MKSA units. For example, an electron in an electric field E accelerates at the rate

a =
−e

me
E (48)
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so the net power of EM waves it radiates is

P [in eV/s] =
e4E2

6πǫ0 c3m2
e

≈ 1.1 · 10−12 × (E[in V/m])2. (49)

Radiation by relativistic particles

For relativistic particles, the angular distribution of radiation is given by eq. (42), which is

much more complicated than its non-relativistic limit (45). However, the net power emitted

by a relativistic accelerating charge can be easily obtained through the magic of Lorentz

transforms.

Consider two frames of reference, the lab frame K and the frame K ′ which happens to

be co-moving with the charged particle at the time we measure the radiation, or rather at

the retarded time tr when that radiation was emitted. Note: K ′ is an inertial frame which

moves at constant velocity u relative to the lab frame K, we just choose u to be equal to

the particle’s velocity v(tr) at a specific moment of the retarded time tr. Consequently, at

the time tr the particle has zero velocity v′ relative to the K ′ frame, but its acceleration a′

has no reason to vanish. Instead, a′ is related to the acceleration a in the lab frame as

a′‖ = γ3a‖ , a′⊥ = γ2a⊥ , (50)

cf. homework set#11, eqs. (2–3) for v′ = 0. Alternatively, we may write the acceleration2 in

the K ′ frame in the covariant form as

a′2 =
1

m2

(

dp′

dt′

)2

=
1

m2

(

−
dp′µ

dτ

dp′µ
dτ

)

=
1

m2

(

−
dpµ

dτ

dpµ
dτ

)

(51)

and then me may use this covariant formula in the lab frame or any other frame of reference.

In the K ′ frame, the particle radiates EM energy according to the Larmor formula (46),

P ′ =
dE′

dt′
=

2q2

3c3
a′2 =

2q2

3c3m2

(

−
dpµ

dτ

dpµ
dτ

)

. (52)

Moreover, in the K ′ frame the radiated power is symmetric WRT reflections of space,

dP ′

dΩ′
(n′) =

q2a′2

4πc3
× sin2 θ′ =

dP ′

dΩ′
(−n′), (53)

so the EM radiation has zero net momentum. Consequently, when we translate the net EM
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energy-momentum from the K ′ frame to the lab frame K, we get

dE = γ × dE′, dP =
γu

c2
dE′. (54)

Also, along the particle’s worldline dt = γdt′, so the rate at which the particle emit EM

energy is the same in both K and K ′ frames,

P =
dE

dt
=

dE′

dt′
= P ′. (55)

Thus, the energy emission rate by the accelerating particle in the lab frame is

P =
2q2

3c3m2

(

−
dpµ

dτ

dpµ
dτ

)

(56)

in covariant form, or in terms of the acceleration in the lab frame,

P =
2q2

3c3
×

(

γ6a2‖ + γ4a2⊥
)

. (57)

According to this formula, acceleration of the same magnitude produces stronger radia-

tion radiation if its directed forward or backward than sideways. But in practice, the forward

or backward acceleration requires electric fields while the sideways acceleration can be done

by magnetic fields, and making strong magnetic fields is easier than making equally strong

electric fields (in Gauss units). Thus, relativistic electrons in linear accelerators (linacs) loose

much less energy to EM radiation than electrons in circular accelerators (synchrotrons).

For example, the biggest electron linac — the SLAC at Stanford — accelerates electrons

to E = 50 GeV (γ = 100 000) using electric fields E ∼ 17 MV/m. Consequently, the forward

acceleration of SLAC electrons (in a lab frame) is given by

d(γmv)

dt
= γ3ma = eE =⇒ a =

1

γ3
×

eE

me
≈

3 · 1018 m/s2

γ3
: (58)

humongous acceleration while the electrons are still slow, but drops to only 3000 m/s2 when

they reach γ = 100 000. But due to the γ6 factor in eq. (57), the power loss to EM radiation
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is uniform throughout the acceleration process,

P =
e4e2

6πǫ0 c3m2
e

≈ 5 · 10−17 W. (59)

This power may be remarkable for a single electron, but it’s completely negligible compared

to the power eE × v ≈ 8 · 10−4 W it gains from the accelerating field.

In plasma wake-field accelerators (currently not quite ready for particle physics, but

hopefully soon), the accelerating electric fields are much higher — up to 50 GV/m in current

experiments, and hopefully even higher in future accelerators. In such fields, the accelerating

electrons radiate EM power at much higher rate — about 5 · 10−8 W per electron — but it’s

still much smaller than the power gain from the accelerating E field.

But now consider a synchrotron in which electrons are made to move in a circle by

a transverse magnetic field B while occasional forward electric fields slowly increase their

energies. The magnetic force qv×B gives electrons centripetal acceleration

ac = ωv =
evB

γm
(60)

(MKSA units) hence rotation frequency

ω =
eB

γm
, (61)

and turning radius

R =
v

ω
=

γmv

eB
=

p

eB
. (62)

Note that this formula applies to electrons and protons alike, for the same relativistic mo-

mentum p we get the same turning radius in the same magnetic field. In a synchrotron, the

turning radius is fixed by the beam pipe geometry, so the magnetic field has to increase as

the particles accelerate to higher and higher momenta.
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In terms of the turning radius R, the centripetal acceleration in the lab frame is given

by the good old non-relativistic formula

ac =
v2

R
, (63)

hence the net power of the synchrotron radiation emitted by the particle is

P =
e2

6πǫ0c3
a2cγ

4 =
e2

6πǫ0c3
×

γ4β4c4

R2
, (64)

which for ultra-relativistic particles becomes

P =
e2c

6πǫ0R2
× γ4. (65)

Note that this power increases as the fourth power of γ, so it becomes a major problem for

the electron synchrotrons which achieve much larger γ’s than the proton accelerators. For

example, the protons at the LHC are accelerated to E = 6500 GeV or γ = 7000 in a tunnel

of turning radius R = 2800 m, so they lose energy to the synchrotron radiation at the rate

P = 1.4 ·10−11 W per proton or about 90 MeV/s. By comparison, the LEP II accelerator —

which used to occupy the same tunnel as the LHS is using now — had accelerated electrons

to a lower energy E = 100 Gev but much higher γ factor γ = 200 000. Consequently,

the LEP II electrons lost energy to the synchrotron radiation at the much higher rate of

P = 10−5 W per electron or about 6 · 105 GeV/s. In other words, in 5.9 µs it took an

electron to make a complete circle around the accelerator, it lost 3.5 GeV worth of energy

to the synchrotron radiation, or about 3.5% of its net kinetic energy. This lost energy had

to be replenished by the electric fields of the accelerating RF cavities for each electron each

time it made a complete circle, and this lead to spectacularly high electric bills.

In general, the fraction of electron’s energy lost to the synchrotron radiation while the

electron makes a single turn around the accelerator is

∆E

E
=

P × (2πR/c)

γmc2
=

e2

3ǫ0mec2
×

γ3

R
=

e2

3ǫ0 (mec2)4
×

E3

R
≈ 8.8 · 10−5 ×

(E[GeV])3

R[m]
.

(66)

Since the main advantage of synchrotrons over linear accelerators is that you can accelerate

the particles over many turns around the circle instead of in a single pass through the linac,

13



the energy loss fraction should be as small as possible, certainly no more than a few percent.

Consequently, the sizes of future electron synchrotrons — if they are ever built — must

increase with energy as E3. For example, the CEPC which China is planning to build in the

next decade would accelerate electrons and positrons to 125 GeV, only 25% higher energy

than the LEP II, but it would have twice the length of LEP or LHS, about 54 km.

By comparison, in proton synchrotrons energy losses to the synchrotron radiation are

not a problem — note the 1/m4 factor in eq. (66). Instead, they need large sizes simply

because it’s hard to make big magnets stronger than a few Tesla, so the turning radius (62)

grows with the particle’s momentum. Thus, given the magnet technology, you need R ∝ E;

numerically

R[m] = 3.35×
p[Gev/c]

B[T]
. (67)

Angular distribution of radiation

Let’s go back to the formula

dP

dΩ
=

2e2

3c3
×

|n× ((n− ββββββββββ)× a))|2

(1− n · ββββββββββ)6
(68)

for the EM power emitted by a relativistic accelerating charge and consider the angular

distribution of this power. The power in eq. (68),

dP

dΩ
=

dEEM

dt dΩ
(69)

is the EM energy crossing a distant sphere surrounding the particle (or rather it’s retarded

position at time t − R/c) per unit of the lab-frame time t. This is a useful quantity to

measure when the particle is continuously accelerating and hence continuously radiating.

But what if the particle suddenly changes its velocity by notable amount in a very brief

time, for example by colliding with another particle, or a fast electron suddenly hitting a

dense target and rapidly coming to stop. In this case, we have a very brief pulse of very

intense radiation (due to very large acceleration) called bremsstrahlung — which is German
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for “breaking radiation”, — and the most useful quantitative feature of this pulse is not its

power but rather its net energy EEM, and also its angular distribution

dEEM

dΩ
=

∫

dt
dP (t)

dΩ
. (70)

Due to Doppler effect, observers in different directions from the charge (or rather its retarded

position) see different durations of the bremsstrahlung pulse: if the pulse was emitted by the

moving particle during time interval ∆tc = γ∆τ , then the observer at rest sees its duration

as

∆t = γ(1− n · ββββββββββ)∆τ = (1− n · ββββββββββ)∆tc. (71)

Consequently, the net bremsstrahlung energy per unit of solid angle emitted in different

directions is

dEEM

dΩ
=

2e2

3c3

∫

dtc
|n× ((n− ββββββββββ)× a))|2

(1− n · ββββββββββ)6−1
. (72)

More generally, the EM energy emitted by a relativistic accelerating charge per unit of

emission time dtc per unit of solid angle is

dEEM

dtc dΩ
=

2e2

3c3
×

|n× ((n− ββββββββββ)× a))|2

(1− n · ββββββββββ)5
(73)

and its angular distribution is

dEEM

dtc dΩ
∝

|n× ((n− ββββββββββ)× a))|2

(1− n · ββββββββββ)5
. (74)

Note the 5th power of the denominator here instead of the 6th power in eq. (68).

For the ultra-relativistic particles, the denominator factor in eq. (74) strongly skews

the energy distribution in the forward direction. Indeed, for γ ≫ 1 and hence β ≈ 1, the
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denominator factor becomes

1

(1− n · ββββββββββ)5
=

1

(1− β cos θ)5
≈

1

(1− cos θ)5
=

1

32 sin10(θ/2)
, (75)

except for very small angles θ <∼ (1/γ) from the velocity’s direction for which

1 − cos θ ≈
θ2

2
≪ 1, 1 − β ≈

1

2γ2
≪ 1 =⇒ 1 − β cos θ ≈

θ2

2
+

1

2γ2
(76)

and hence

1

(1− n · ββββββββββ)5
=

1

(1− β cos θ)5
≈

(

2γ2

1 + (γθ)2

)5

. (77)

To get the full picture of the radiation’s angular distribution, we must modulate this forward

peak by the numerator of eq. (74). For the general directions of the acceleration and the

velocity, this is a rather painful exercise in trigonometry, so let’s limit our analysis to the

two special cases: (A) a ‖ v and (B) a ⊥ v.

(A) Forward or backward acceleration, for example a relativistic electron slamming into a

solid target and rapidly coming to stop. Thanks to a ‖ v, we have ββββββββββ × a = 0 and hence

n× ((n− ββββββββββ)× a) = n× (n× a) =⇒
∣

∣n× ((n− ββββββββββ)× a)|2 = a2 × sin2 θ. (78)

Combining this numerator factor of the angular distribution (74) with the denominator (75),

we get

dE

dtc dΩ
∝

sin2 θ

(1− β cos θ)5
. (79)

Let me graphically compare this distribution for a moderately relativistic particle with β =

0.6 (red line on the diagram below) to that of a non-relativistic particle (blue line):

v, a
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For the ultra-relativistic particles, this angular distribution becomes

sin2 θ

(1− β cos θ)5
≈

sin2 θ

(1− cos θ)5
=

cos2(θ/2)

8 sin8(θ/2)
(80)

except at very small angles from the forward direction for which

sin2 θ

(1− β cos θ)5
≈

32γ8(γθ)2

[1 + (γθ)2]5
. (81)

This distribution peaks at θ = 1/(2γ), and 95% of the total energy is emitted into the

forward cone θ ≤ (2/γ); here is the plot of the power density as a function of γθ for small θ:

0 1 2 3
0

1

γθ

dE/dtc/dΩ

(B) Sideways acceleration — for example in synchrotron radiation, — a ⊥ v. In this case,

there is no axial symmetry, and the radiation intensity depends on both spherical angles θ

and φ. Let’s use the coordinate system where the velocity points in z direction while the

acceleration points in x direction, thus in Cartesian coordinates

a = (a, 0, 0), ββββββββββ = (0, 0, β), and n = (sin θ cosφ, sin θ sinφ, cos θ). (82)

Consequently,

[

n× ((n− ββββββββββ)× a)
]

x
= a

(

sin2 θ cos2 φ − 1 + β cos θ
)

,
[

n× ((n− ββββββββββ)× a)
]

y
= a× sin2 θ cosφ sinφ,

[

n× ((n− ββββββββββ)× a)
]

z
= a

(

cos θ sin θ cosφ − β sin θ cosφ
)

,

(83)
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hence in the numerator of the distribution (74) we get (after some algebra)

∣

∣n× ((n− ββββββββββ)× a)
∣

∣

2
= a2

(

(1− β cos θ)2 − (1− β)2 sin2 θ cos2 φ
)

. (84)

Altogether, the angular distribution of the emitted power is

dE

dtc dΩ
∝

[

1

(1− β cos θ)3
−

sin2 θ cos2 φ

γ2(1− β cos θ)5

]

. (85)

Again, for ultra-relativistic particles with γ ≫ 1 most of this power is emitted into the

forward cone of θ <∼ (1/γ). Within that forward cone, we may approximate

dE

dtc dΩ
∝

1 − 2(γθ)2 cos(2φ) + (γφ)4

(1 + (γθ)2)5
; (86)

here is the plot of this power density as a function of γθ for small θ and for several values of

φ:

0 1 2
0

1

γθ

dE/dtc/dΩ

blue: φ = 0, π;

red: φ = ±π
2 ;

green: φ = ±π
4 ,±

3π
4 .
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