
PHY–387 K. Problem set #1. Due January 29, 2018.

1. Let’s start with an electrostatic problem. Suppose you are given the potential Φ(x) along

a complete spherical surface of radius R relative to Φ(∞) = 0, and you know there are no

electric charged anywhere outside that sphere. Then the potential at any point y outside

the sphere can be found as

Φ(y) =
y2 −R2

4πR

∫∫
sphere

d2Area(x)
Φ(x)

|x− y|3
. (1)

Your task is to derive this formula in two different ways.

Let’s start by solving the Laplace equation∇2Φ(x) = 0 by separating variables in spherical

coordinates: A general solution for the outside of a sphere subject to the asymptotic

condition Φ(∞) = 0 has form

Φ(r, θ, φ) =
∞∑
`=0

+∑̀
m=−`

C`,m × r−`−1 × Y`,m(θ, φ) (2)

for some constants C`,m. The Y`,m(θ, φ) in this formula are spherical harmonics you should

be familiar with from the undergraduate quantum mechanics class.

(0) If you are not familiar with eq. (2) and/or with the spherical harmonics, please read

§3.1–3 and §3.5–6 of the Jackson’s textbook.

(a) Determine the coefficients C`,m in the series (2) from the known potential at r = R,

then write the potential outside the sphere as

Φ(y) =

∫∫
sphere

d2Area(x) Φ(x)× F (x,y) (3)

for F (x,y) =
∑
`,m

(terms you need to calculate). (4)

(b) Sum up the series (4) and show that the integral (3) amounts to eq. (1). Here are

some useful formulae:

+∑̀
m=−`

Y`,m(ny)Y ∗`,m(nx) =
2`+ 1

4π
× P`(nx · ny), (5)
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∞∑
`=0

t`P`(c) =
1√

1− 2tc+ t2
for |t| < 1 and |c| ≤ 1, (6)

∞∑
`=0

(2`+ 1)t`P`(c) = (find out from the previous formula). (7)

The other method to derive eq. (1) is to use the Green’s function G(x,y) for the Laplace

equation outside the sphere subject to the Dirichlet boundary condition on the sphere

itself, G(x,y) ≡ 0 for |x| = R, as well as G = 0 for x =∞.

(c) Use the image charge method for the outside of a grounded conducting sphere to show

that

G(x,y) =
1

4π |x− y|
− R/|y|

4π |x− R2

|y|2y|

=
1

4π
√
x2 + y2 − 2xyc

− R

4π
√
x2y2 +R4 − 2R2xyc

(8)

where x = |x|, y = |y|, and c = nx · ny.

(d) Evaluate the normal derivative of this Green’s function at the boundary.

(e) Finally, use the Green’s function method (cf. textbook §1.10) to derive eq. (1).

2. Next, a couple of warm-up exercises on multipole moments.

(a) Consider the quadrupole-like potential

Φ(x) =
Qijn

x
i n

x
j

4πε0 |x|3
(9)

for some would-be quadrupole moment tensor Qij , which you may assume to be

symmetric — Qij = Qji — but not necessarily traceless.

Show that the potential (9) obeys the Laplace equation ∇2Φ = 0 at x 6= 0 if and only

if the Qij tensor happens to be traceless, Qii = 0.

The point of this exercise is to explain why the quadrupole moment tensor of any
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charge distribution must be traceless. And it’s defined as

Qij =

∫∫∫
d3y ρ(y)

(
3
2yiyj −

1
2δijy

2
)

(10)

— with an extra −1
2δijy

2 term inside the (· · ·) — precisely to make it traceless.

(b) Now generalize this result to higher multipoles: Consider a would-be 2`–pole potential

Φ(x) =
M(`)

i1,...,i`
nxi1 · · ·n

x
i`

4πε0 |x|`+1
(11)

for some would-be 2`–pole moment tensorM(`)
i1,...,i`

. Assume this `–index tensor to be

totally symmetric under all possible permutations of its indices, but do not assume

its tracelessness.

Show that the potential (11) obeys the Laplace equation if and only if the tensorM(`)

happens to be traceless, M(`)
i1,...,i`−2,j,j

= 0 for all i1, . . . , i`−2 = 1, 2, 3.

Let me clarify the meaning of the trace of a tensor with more that 2 indices. Choose

any two indices of the tensor, and fix all the remaining ` − 2 indices. Restrict the

chosen indices equal values, and sum over all allowed valued of an index — just as

you would do for a two-index tensor. Repeat this procedure for all other values of

the ` − 2 indices you are not tracing over — and this makes the trace into another

tensor, but with ` − 2 indices instead of `. For example, take a 3-index tensor Tijk

and take the trace over the first and the third index, thus tj = Tiji (implicit sum over

i = 1, 2, 3). This trace tj itself is a one-index tensor (i.e., a vector).

For a non-symmetric tensor, we should specify which two of its ` indices we are tracing

over. For example, for a non-symmetric 3–index tensor Tijk we can trace over the first

two indices and get t
(12)
k = Tiik, or over the last two indices and get t

(23)
i = Tijj , or

over the first and the third index and get t
(13)
j = Tiji. And in general, t(12), t(23), and

t(13) would be three different 1-index tensors.

However, for a totally symmetric `-index tensor — such as the would-be multipole

moment in eq. (11) — it does not matter which two indices we are tracing over. We
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may pick any two indices we like, and we would get exactly the same trace. Moreover,

the trace itself would be a totally-symmetric (`− 2)–index tensor.

3. And here is another problem about the multipole expansion.

(a) Consider a spherical body or radius R with a highly nonuniform charge density

ρ(r, θ, φ) =
Q0

R5
× (3R2 − 5r2)× sin θ (for r ≤ R only). (12)

Find the leading multipole moment of the body and the electric potential Φ(r, θ, φ)

it creates far away from the body.

(b) Now consider a generic compact body of net charge q, dipole moment p, quadrupole

moment Qij , octupole momentOijk, etc., etc. This body is subject to a slowly varying

external potential Φe(x). Show that the potential energy of the body in this external

potential is

U = qΦ(0) + pi∇iΦ(0) + 1
3Qij∇i∇jΦ(0) + 1

15Oijk∇i∇j∇kΦ(0) + · · ·

=
∞∑
`=0

K`M
(`)
i1···i` ×∇i1 · · · ∇i`Φ(0)

(13)

where

K` =
1

(2`− 1)!!
=

1

(2`− 1)(2`− 3) · · · (3)(1)
. (14)

(Deriving eq. (14) for the coefficients Kn is an optional exercise. If you are short on

time, skip it.)

(c) Use eq. (13) to derive a similar formula for the net force on the body and the net

torque on the body (relative to the pivot point x0 = 0) in terms of the external electric

field E = −∇Φ and its derivative at x0 = 0.

(d) Finally, let’s go back to the spherical body from part (a) and calculate the leading

terms on the net force and net torque on this body in external potential

Φe(x1, x2, x3) = Φ0 sin(κx1) cos(κx2) exp(
√

2κx3), κR� 1. (15)
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