1. Consider the magnetic field inside a tightly wound solenoid of finite length L and finite radius R.
(a) Using nothing but the rotational symmetry of the solenoid and the analyticity of the magnetic field as a function of the position \mathbf{x}, argue that in the cylindrical coordinates (z, s, ϕ),

$$
\begin{align*}
& B_{z}(z, s, \phi)=\sum_{n=0}^{\infty} \alpha_{n}(z) \times s^{2 n}=\alpha_{0}(z)+\alpha_{1}(z) s^{2}+\alpha_{2}(z) s^{4}+\cdots \tag{1}\\
& B_{s}(z, s, \phi)=\sum_{n=0}^{\infty} \beta_{n}(z) \times s^{2 n+1}=\beta_{0}(z) s+\beta_{1}(z) s^{3}+\beta_{2}(z) s^{5}+\cdots \tag{2}\\
& B_{\phi}(z, s, \phi)=0 \tag{3}
\end{align*}
$$

for some analytic functions $\alpha_{n}(z)$ and $\beta_{n}(z)$.
(b) Next, use $\nabla \cdot \mathbf{B}=0$ and $\nabla \times \mathbf{B}=0$ (inside the solenoid) to derive recursive relations between the functions $\alpha_{n}(z), \beta_{n}(z)$ and their derivatives, and show that

$$
\begin{equation*}
\alpha_{n}(z)=\frac{(-1)^{n}}{2^{2 n}(n!)^{2}} \frac{\partial^{2 n}}{\partial z^{2 n}} \alpha_{0}(z), \quad \beta_{n}(z)=\frac{(-1)^{n+1}}{2^{2 n+1}(n+1)!n!} \frac{\partial^{2 n+1}}{\partial z^{2 n+1}} \alpha_{0}(z) \tag{4}
\end{equation*}
$$

In light of parts (a) and (b), given the magnetic field $B_{z}(z, 0)=\alpha_{0}(z)$ on the axis of the solenoid as a function of z, the field off the axis obtains from it as a series

$$
\begin{align*}
& B_{z}(z, s)=\alpha_{0}(z)-\frac{s^{2}}{4} \alpha_{0}^{\prime \prime}(z)+\frac{s^{4}}{64} \alpha_{0}^{\prime \prime \prime \prime}(z)+\cdots \tag{5}\\
& B_{s}(z, s)=-\frac{s}{2} \alpha_{0}^{\prime}(z)+\frac{s^{3}}{16} \alpha_{0}^{\prime \prime \prime}(z)-\frac{s^{5}}{384} \alpha_{0}^{\prime \prime \prime \prime \prime}(s)+\cdots \tag{6}
\end{align*}
$$

(c) Now approximate the winding of the solenoid as a cylindrical current sheet of density $K=I N / L$ and use the Biot-Savart-Laplace formula to show that the field on the
cylinder's axis is

$$
\begin{equation*}
B_{z}(z, 0)=\frac{\mu_{0} I N}{L} \times \frac{1}{2}\left(\frac{(L / 2)+z}{\sqrt{((L / 2)+z)^{2}+R^{2}}}+\frac{(L / 2)-z}{\sqrt{((L / 2)-z)^{2}+R^{2}}}\right) . \tag{7}
\end{equation*}
$$

(d) Finally, consider a solenoid that's much longer than its radius and focus on the central region of $|z|=O(R) \ll L$. Estimate the derivatives of the on-axis field in this region and show that for $z=O(R)$ and any s between 0 and R,

$$
\begin{equation*}
B_{z}(z, s)=B_{z}(0,0) \times\left(1+O\left(\frac{R^{4}}{L^{4}}\right)\right), \quad B_{s}(z, s)=B_{z}(0,0) \times O\left(\frac{R^{4}}{L^{4}}\right) . \tag{8}
\end{equation*}
$$

Also, calculate the leading $O\left(R^{4} / L^{4}\right)$ terms in these formulae.
2. Consider a conductor in the shape of a long cylinder of radius b with a hole drilled in it. The hole is also cylindrical, or radius a; the hole's axis is parallel to the axis of the conductor itself, but is shifted from that axis by some distance $d(a+d<b)$. Here is the cross-section:

A current of uniform density \mathbf{J} flows along this conductor.
Use Ampere's Law and the linear superposition principle to find the magnetic field \mathbf{B} both the magnitude and the direction - inside the hole.
3. Consider a thin spherical shell of radius R with a uniform surface charge density σ. The sphere rotates about an axis through its center with angular velocity $\vec{\omega}$.
(a) Calculate the vector potential \mathbf{A} and the magnetic field \mathbf{B} inside and outside the rotating sphere.
(b) Now consider two such rotating charged spheres, one inside the other. The two spheres are concentric, but they rotate around different, non-parallel axes, $\vec{\omega}_{1} \nVdash \vec{\omega}_{2}$. Calculate the torque between the two spheres.

