
PHY–387 K. Problem set #7. Due March 19, 2018.

1. Show that in the regime of normal dispersion — i.e., at frequencies not too close to any of

the resonances — the group velocity of the EM wave is always less than c. For simplicity,

use the low-density approximation

ǫ(ω) ≈ 1 +
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∑
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fi
ω2
i − ω2 − iωγi

(1)

as well as µ(ω) ≈ 1.

2. In conducting materials, the EM waves attenuate with distance. For a specific exam-

ple, consider a uniform material with dielectric constant ǫ, conductivity σ, and negligible

magnetism, µ = 1. The attenuating plane wave has general form

E(x, y, z, t) = ~E exp(ikz − κz − iωt), H(x, y, z, t) = ~H exp(ikz − κz − iωt). (2)

(a) Write down formulae for k and κ as functions of ω. Also, relate the electric amplitude

~E and the magnetic amplitude ~H to each other.

Now consider a boundary between a conducting material and the vacuum. Suppose an EM

wave comes from the vacuum side and hits the boundary head-on.

(b) Calculate the reflectivity R = |r|2 of the boundary.

(c) Show that for a good conductor

R ≈ 1 − 4πδ

λ0
(3)

where λ0 is the wavelength of the EM wave in the vacuum and δ is the skin-depth of

the current of the same frequency in the conductor.

(d) As an example, find the reflectivity of sea water (σ ≈ 5

Ω

/m) at an FM radio frequency

ω = 2π × 100 MHz.
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3. Consider the Goos–Hänchen effect: In a total internal reflection, the reflected ray is dis-

placed sideways relative to the incoming ray as if it’s reflected not from the boundary itself

but from a small distance behind it.

D

n2

n1
(4)

The key to the Goos–Hänchen effect is the complex reflection coefficient

r(α) = exp(iφ(α)), (5)

its magnitude in a total internal reflection is 1, but the phase depends on the incidence

angle α.

(a) Suppose the incident wave has a finite but large width in the direction ⊥ to the wave

within the plane of incidence, for example

Ei(x, y, z, t) = E0 ei exp
(

ik0(x sinα + z cosα) − iωt
)

×

× exp

(

−(x cosα− z sinα)2

2a2

)

.
(6)

for a ≫ (1/k0). (In my notations, E0 is the overall amplitude of the wave and e its

polarization vector.)

Fourier transform this wave to the k space, calculate the reflected wave (including its

overall phase), then Fourier transform that to the coordinate space. Show that

Er(x, y, z, t) = E0 er exp
(

ik0(x sinα− z cosα) − iωt
)

×

×
∫

d∆k

2π
A(∆k)× exp

(

i∆k((x cosα+ z sinα) + iφ(k0 +∆k)
)

(7)

where A(∆k) =
√
2πa exp(−a2∆k2/2).
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(b) Perform the Fourier integral in eq. (7) and show that

Er(x, y, z, t) = E0 er exp
(

ik0(x sinα− z cosα) − iωt
)

×

× eiφ0 exp

(

−(x cosα + z sinα−D)2

2a2

)

(8)

for the displacement

D = − ∂φ

∂∆k⊥
= − 1

k0

∂φ

∂α
. (9)

(c) Analytically continue the Fresnel equations for the reflection coefficient r to the regime

of total internal reflection and calculate its phase φ as a function of α. Note two

different equations for the in-plane and normal-to-the-plane polarizations of the EM

wave.

(d) Finally, put it all together and calculate the sideways displacement of the reflected

wave. Show that

D⊥ =
2

k

sinα
√

sin2 α− (n2/n1)4
, (10)

D‖ = D⊥ × 1

(1 + (n1/n2)2) sin
2 α − 1

. (11)
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