1. Show that in the regime of normal dispersion - i.e., at frequencies not too close to any of the resonances - the group velocity of the EM wave is always less than c. For simplicity, use the low-density approximation

$$
\begin{equation*}
\epsilon(\omega) \approx 1+\frac{N e^{2}}{\epsilon_{0} m_{e}} \sum_{i}^{\text {resonances }} \frac{f_{i}}{\omega_{i}^{2}-\omega^{2}-i \omega \gamma_{i}} \tag{1}
\end{equation*}
$$

as well as $\mu(\omega) \approx 1$.
2. In conducting materials, the EM waves attenuate with distance. For a specific example, consider a uniform material with dielectric constant ϵ, conductivity σ, and negligible magnetism, $\mu=1$. The attenuating plane wave has general form

$$
\begin{equation*}
\mathbf{E}(x, y, z, t)=\overrightarrow{\mathcal{E}} \exp (i k z-\kappa z-i \omega t), \quad \mathbf{H}(x, y, z, t)=\overrightarrow{\mathcal{H}} \exp (i k z-\kappa z-i \omega t) \tag{2}
\end{equation*}
$$

(a) Write down formulae for k and κ as functions of ω. Also, relate the electric amplitude $\overrightarrow{\mathcal{E}}$ and the magnetic amplitude $\overrightarrow{\mathcal{H}}$ to each other.

Now consider a boundary between a conducting material and the vacuum. Suppose an EM wave comes from the vacuum side and hits the boundary head-on.
(b) Calculate the reflectivity $R=|r|^{2}$ of the boundary.
(c) Show that for a good conductor

$$
\begin{equation*}
R \approx 1-\frac{4 \pi \delta}{\lambda_{0}} \tag{3}
\end{equation*}
$$

where λ_{0} is the wavelength of the EM wave in the vacuum and δ is the skin-depth of the current of the same frequency in the conductor.
(d) As an example, find the reflectivity of sea water $(\sigma \approx 5 \mho / \mathrm{m})$ at an FM radio frequency $\omega=2 \pi \times 100 \mathrm{MHz}$.
3. Consider the Goos-Hänchen effect: In a total internal reflection, the reflected ray is displaced sideways relative to the incoming ray as if it's reflected not from the boundary itself but from a small distance behind it.

The key to the Goos-Hänchen effect is the complex reflection coefficient

$$
\begin{equation*}
r(\alpha)=\exp (i \phi(\alpha)), \tag{5}
\end{equation*}
$$

its magnitude in a total internal reflection is 1 , but the phase depends on the incidence angle α.
(a) Suppose the incident wave has a finite but large width in the direction \perp to the wave within the plane of incidence, for example

$$
\begin{align*}
\mathbf{E}_{i}(x, y, z, t)=\mathcal{E}_{0} \mathbf{e}_{i} & \exp \left(i k_{0}(x \sin \alpha+z \cos \alpha)-i \omega t\right) \times \\
& \times \exp \left(-\frac{(x \cos \alpha-z \sin \alpha)^{2}}{2 a^{2}}\right) . \tag{6}
\end{align*}
$$

for $a \gg\left(1 / k_{0}\right)$. (In my notations, \mathcal{E}_{0} is the overall amplitude of the wave and \mathbf{e} its polarization vector.)

Fourier transform this wave to the \mathbf{k} space, calculate the reflected wave (including its overall phase), then Fourier transform that to the coordinate space. Show that

$$
\begin{align*}
\mathbf{E}_{r}(x, y, z, t)= & \mathcal{E}_{0} \mathbf{e}_{r} \exp \left(i k_{0}(x \sin \alpha-z \cos \alpha)-i \omega t\right) \times \\
& \times \int \frac{d \Delta k}{2 \pi} A(\Delta k) \times \exp \left(i \Delta k\left((x \cos \alpha+z \sin \alpha)+i \phi\left(\mathbf{k}_{0}+\Delta \mathbf{k}\right)\right)\right. \tag{7}
\end{align*}
$$

where $A(\Delta k)=\sqrt{2 \pi} a \exp \left(-a^{2} \Delta k^{2} / 2\right)$.
(b) Perform the Fourier integral in eq. (7) and show that

$$
\begin{align*}
\mathbf{E}_{r}(x, y, z, t)=\mathcal{E}_{0} \mathbf{e}_{r} & \exp \left(i k_{0}(x \sin \alpha-z \cos \alpha)-i \omega t\right) \times \\
& \times e^{i \phi_{0}} \exp \left(-\frac{(x \cos \alpha+z \sin \alpha-D)^{2}}{2 a^{2}}\right) \tag{8}
\end{align*}
$$

for the displacement

$$
\begin{equation*}
D=-\frac{\partial \phi}{\partial \Delta \mathbf{k}_{\perp}}=-\frac{1}{k_{0}} \frac{\partial \phi}{\partial \alpha} . \tag{9}
\end{equation*}
$$

(c) Analytically continue the Fresnel equations for the reflection coefficient r to the regime of total internal reflection and calculate its phase ϕ as a function of α. Note two different equations for the in-plane and normal-to-the-plane polarizations of the EM wave.
(d) Finally, put it all together and calculate the sideways displacement of the reflected wave. Show that

$$
\begin{align*}
D_{\perp} & =\frac{2}{k} \frac{\sin \alpha}{\sqrt{\sin ^{2} \alpha-\left(n_{2} / n_{1}\right)^{4}}} \tag{10}\\
D_{\|} & =D_{\perp} \times \frac{1}{\left(1+\left(n_{1} / n_{2}\right)^{2}\right) \sin ^{2} \alpha-1} \tag{11}
\end{align*}
$$

