PHY-387 K. Problem set #7. Due March 19, 2018.

. Show that in the regime of normal dispersion — 1i.e., at frequencies not too close to any of
the resonances — the group velocity of the EM wave is always less than c¢. For simplicity,

use the low-density approximation
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as well as pu(w) ~ 1.

. In conducting materials, the EM waves attenuate with distance. For a specific exam-
ple, consider a uniform material with dielectric constant €, conductivity o, and negligible

magnetism, p = 1. The attenuating plane wave has general form

E(z,y,2,t) = & exp(ikz — vz — iwt), H(z,y,2,t) = Hexp(ikz — kz — iwt). (2)

(a) Write down formulae for k and « as functions of w. Also, relate the electric amplitude

& and the magnetic amplitude H to each other.

Now consider a boundary between a conducting material and the vacuum. Suppose an EM

wave comes from the vacuum side and hits the boundary head-on.
(b) Calculate the reflectivity R = |r|? of the boundary.

(c¢) Show that for a good conductor
R~1- — (3)

where )\g is the wavelength of the EM wave in the vacuum and ¢ is the skin-depth of

the current of the same frequency in the conductor.

(d) As an example, find the reflectivity of sea water (¢ ~ 50/m) at an FM radio frequency
w = 271 x 100 MHz.



3. Consider the Goos-Hanchen effect: In a total internal reflection, the reflected ray is dis-
placed sideways relative to the incoming ray as if it’s reflected not from the boundary itself

but from a small distance behind it.
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The key to the Goos—Hanchen effect is the complex reflection coefficient

r(a) = exp(ig(a)), ()

its magnitude in a total internal reflection is 1, but the phase depends on the incidence

angle a.

(a) Suppose the incident wave has a finite but large width in the direction L to the wave

within the plane of incidence, for example

Ei(z,y,2,t) = &e; exp(iko(zsina + zcosa) — iwt) x

(zcosa — zsina)? (6)
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for a > (1/kp). (In my notations, & is the overall amplitude of the wave and e its

polarization vector.)

Fourier transform this wave to the k space, calculate the reflected wave (including its

overall phase), then Fourier transform that to the coordinate space. Show that

E,(z,y,2,t) = & e exp(iko(zsina — zcosa) — iwt) x
X /% A(Ak) x exp(iAk((zcosa + zsina) + i¢(ko + Ak))
T

(7)
where A(Ak) = v27raexp(—a’Ak?/2).



(b) Perform the Fourier integral in eq. (7) and show that

E,(z,y,2,t) = & e, exp(iko(zsina — zcosa) — iwt) X

X e exp (_ (x cos a —|—2zs2ina — D)2) (8)
a

for the displacement
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(c¢) Analytically continue the Fresnel equations for the reflection coefficient r to the regime
of total internal reflection and calculate its phase ¢ as a function of a. Note two
different equations for the in-plane and normal-to-the-plane polarizations of the EM

wave.

(d) Finally, put it all together and calculate the sideways displacement of the reflected

wave. Show that
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