
PHY–387 K. Problem set #10. Due April 18, 2018.

1. The first problem is about scattering by a perfectly conducting small sphere of radius

r ≪ λ.

(a) Show that the incident plane EM wave induces in the perfectly conducting small

sphere not only an electric dipole moment p = +4πǫ0r
3Einc but also a magnetic

dipole moment m = −2πr3Hinc.

Hint: Because of skin effect, a perfectly conductor acts as a perfect diamagnetic to an

oscillating magnetic field.

(b) Show that the scattered wave has form

Esc = −k2a3E0

eikr−iωt

r

(

n×
(

(n− 1

2
n0)× e0

)

)

(1)

where e0 is the unit polarization vector of the incident wave (e∗0 · e0 = 1, n0 · e0 = 0),

and hence the partial cross-section

dσ

dΩ
=

k4a6

4

(

5 − 4n · n0 − 4 |n · e0|
2 − |(n× n0) · e0|

2
)

. (2)

(c) Show that for a linearly polarized incident wave the partial cross section(2) becomes

dσ

dΩ
=

k4a6

8

(

5 − 8 cos θ + 5 cos2 θ − 3 sin2 θ cos(2φ)
)

. (3)

Also, write down a formula for the partial cross-section for the circularly polarized

incident wave.

(d) Finally, suppose the incident wave is un-polarized, i.e., a 50–50 incoherent mixture

of two orthogonal linear polarizations. Show that the scattered wave in this case

is partially polarized and calculate its degree of polarization Π as a function of the

scattering angle θ.
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2. The next problem is about the relativistic velocity addition formula: Two velocities v1 and

v2 in the same direction add up according to

v1+2 =
v1 + v2

1 + v1v2/c2
. (4)

(a) Derive eq. (4) from two successive Lorentz transforms.

In 1851 Hyppolite Fizeau used interferometry to measure the speed of light in moving water

or other liquids. He found that for light traveling in the same direction as the liquid or in

the opposite direction, its speed is

u =
c

n
±

(

1−
1

n2

)

× v (5)

where n is the refraction index of the liquid and v is its velocity.

(b) Derive eq. (5) from the relativistic velocity addition formula.

(c) Suppose the refraction index n of the liquid depends on the light frequency ω. Show

that in this case, the phase velocity of light in the moving liquid becomes

u =
c

n
±

(

1 −
1

n2
+

ω

n

dn

dω

)

× v. (6)

3. The last problem is about the twin paradox. But first, consider a uniformly accelerating

spaceship. That is, at any time t > 0 it has the same acceleration a relative to an inertial

frame which at that moment has the same velocity as the ship.

(a) Show that the time τ aboard the ship, the time t on the planet where the ship has

started from, and the velocity v of the ship relative to that planet are related to each

other as

at

c
= sinh

(aτ

c

)

,
v

c
= tanh

(aτ

c

)

=
at

√

c2 + (at)2
. (7)

Hint: use the relativistic velocity addition formula (4).
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(b) Find the distance of the ship from its starting point as a function of t and as a function

of τ . Also, show that a light signal sent from the starting point at any time t > c/a

will never catch up with the ship as long as it keeps accelerating.

Now consider a round trip from Earth to (possibly habitable) planet Gliese 667 Cc, about

23.62 light years from Earth. For the astronaut’s convenience, the ship accelerates at

constant rate a = g = 9.80 m/s2 from Earth to the mid-point, then decelerates at the same

rate until it stops at the destination. It spends a year at the Gliese 667 Cc planet, then

flies back in the same manner: accelerates at constant rate a = g to the midpoint, the

decelerates to stop at the Earth.

(c) If a crew member has a twin who stayed on Earth and the trip started on their 21st

birthday, how old would be each twin by the time the ship comes back to Earth?
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